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Abstract

This paper studies the welfare and distributional effects of dynamically priced highway toll lanes.

To quantify the equilibrium effects of tolling, we develop and estimate a model of driver demand,

the road technology, and the pricing algorithm. The demand model features heterogeneous

drivers who choose their departure time under imperfect information about travel times and

prices and then, once the uncertainty is resolved, choose whether to take the priced (faster)

or unpriced (slower) lanes. We estimate the model using data on toll transactions, historical

traffic conditions, and driver characteristics for I-405 in Washington State. Relative to a world

in which the same number of highway lanes are all free, status-quo tolling increases aggregate

welfare for drivers in all income quartiles. Over three-fourths of the gains for drivers are due

to the ‘option value’ of tolling: even drivers who infrequently take the priced lanes benefit from

having the option to pay for speed when traffic is worse than expected. Moreover, the largest

gains accrue to drivers in the bottom income quartile, primarily due to the spatial distribution

of lower- and higher-income drivers rather than preference heterogeneity. Lower-income drivers

have longer I-405 commutes and—thanks to the design of the pricing algorithm—often face an

advantageous tradeoff between time savings and price. Finally, we show how simple revisions

to the pricing algorithm can increase aggregate welfare and help achieve redistributive goals.
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1 Introduction

Traffic congestion has large human and environmental costs, resulting in substantial wasted time,

wasted fuel, and air pollution. As early as Pigou (1920), economists have advocated congestion

pricing as a way of correcting this negative externality. In the past 25 years, cities around the world

have begun charging congestion fees for driving in crowded downtown zones, including Singapore

(Phang and Toh, 2004), London (Leape, 2006), and Stockholm (Börjesson et al., 2012). In the

United States, in contrast, the predominant form of congestion pricing takes place on highways,

where dynamically priced toll lanes run adjacent to existing unpriced lanes.1 By updating prices

in response to real-time traffic conditions, these toll lanes keep speeds high and offer paying drivers

substantial time savings. Drivers have the option but not the obligation to pay for speed, as they

retain the unpriced lanes as a (slower) alternative.

However, there is disagreement about the distributional effects of highway toll lanes, which

has hampered the expansion of pricing in practice. On one side, policymakers refer to dynamic

tolling as “value pricing” and emphasize that it provides choice to drivers (Samdahl et al., 2013).

On the other side, opponents are concerned that “Lexus lanes” enrich the wealthy at everyone

else’s expense (Astor, 2017; Rosendorf, 2018). Evaluation of these perspectives depends on two

empirical objects: the distribution of driver preferences and what we call the “road technology”—

the relationship between traffic quantities and travel times. When one lane becomes tolled, drivers

substitute from the newly priced lane into the remaining unpriced ones, increasing travel times in

the unpriced lanes. High peak-hour prices may also induce drivers to substitute toward driving

off-peak or not at all, which can reduce average travel times if travel time increases convexly in the

number of cars. Finally, since tolling changes the predictability of travel times, having the option

to take the priced lanes can serve as insurance against worse-than-expected traffic conditions.

In this paper, we study the aggregate and distributional effects of dynamic tolling. We bring

together data on toll transactions, driver characteristics, and historical traffic conditions from

Interstate 405 in Washington State. We begin by presenting a series of stylized facts documenting

heterogeneity in the potential value of the toll lanes. Low-income drivers face advantageous trade-

offs between price and travel time savings thanks to where they live. However, conditional on

geography, lower- and higher-income drivers choose the priced lane at similar rates and under similar

conditions, and they respond similarly to exogenous price changes. To quantify the equilibrium

effects of tolling, we build and estimate a model of driver demand, the road technology, and the

pricing algorithm. In particular, the demand model incorporates the features of dynamic tolling

highlighted above: choices of where and when to drive, as well as uncertainty about prices and

travel times. Using the estimated model, we find that low-income drivers in fact gain the most from

status-quo tolling, and we explore how equilibrium outcomes would change under counterfactual

pricing policies.

1Wood et al. (2021) report that at the end of 2019, there were 53 highways with toll lanes in the United States,
totaling 1858 lane-miles across 16 states. (These numbers do not include toll roads, on which all lanes are priced.)
Of the 53 toll lane facilities, 40 used dynamic pricing.
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Our empirical analysis uses data from the I-405 Express Toll Lanes in Washington State. The

tolled part of this corridor features both unpriced general-purpose (GP) lanes and priced high-

occupancy/toll (HOT) lanes. Prices are updated dynamically every five minutes and vary across

“trip definitions”—where the driver enters and exits the toll lanes—motivating our definition of a

market as a group of highway entry-exit pairs with the same trip definition. Our primary dataset

is the universe of almost 10 million I-405 toll transactions in 2019, which we link to proxies for

driver income. We additionally construct a panel of historical traffic conditions using data from

sensors embedded in the road approximately every half mile, which record speeds and volumes at

five-minute intervals.

We begin by showing suggestive evidence that differences across lower- and higher-income drivers

arise primarily from where and when they drive, rather than underlying preference heterogeneity.

We use two proxies for driver income, the median household income in her home Census tract and

the retail price of her car. By both measures, lower-income drivers tend to belong to “longer” I-405

markets—that is, their travel involves greater distances on I-405. Drivers in these longer markets

face an advantageous tradeoff between HOT prices and time savings, as prices increase more slowly

in distance than the time saved by taking the HOT instead of GP lane. In contrast, patterns in the

toll transaction data suggest that preference heterogeneity along observables is modest. Conditional

on when and where they drive, HOT trips taken by higher-income drivers have only slightly lower

time savings and higher prices. Moreover, using variation due to prices being rounded to the nearest

25 cents, we show that lower- and higher-income drivers respond similarly to prices being rounded

up instead of down.

Since a full welfare analysis requires accounting for the equilibrium effects of dynamic tolling, our

next step is to develop a model of driver demand, the road technology, and the pricing algorithm.

The model provides a framework for decomposing gains and losses, both across drivers and across

channels; it also allows us to simulate outcomes under counterfactual policies. Our structural model

restricts attention to the morning commute, a setting where drivers are likely to make repeated

choices with stable preferences.

On the demand side, we extend the classical Vickrey (1969) trip scheduling model to incorpo-

rate a new welfare channel, the option value of tolling. Drivers in the model have heterogeneous

preferences over prices, travel times, and how early or late they are to their destinations, relative to

their ideal arrival times. They make decisions in two stages. In the first stage, each driver chooses

a departure time (or the non-405 outside option) given imperfect information about future prices

and travel times. In the second stage, she observes the realized price and travel times at her chosen

departure time and decides between the priced and unpriced routes. Our empirical adaptation of

the theoretical model in Vickrey (1969) is similar to that of Kreindler (2024), but incorporates im-

perfect information in the first stage such that drivers value the option to ‘reoptimize’ their choice

of lane in the second stage, once observing road conditions. Importantly, even drivers who rarely

choose the priced route may still derive value from having the option to do so. For example, a

driver can choose to leave later without risking arriving late to their destination, because she can

2



pay for speed in the event of worse-than-expected traffic.

Equilibrium travel times and prices are determined by the corridor’s road technology and the

pricing algorithm. The road technology model embeds a static relationship between traffic density

and traffic speed inside a discretized model of traffic dynamics in space and time. Dynamics are

important because drivers from multiple markets (groups of highway entry-exit pairs) and multiple

departure times contribute to the traffic density, and hence the traffic speed, of a given road

segment during a given time interval. Travel times in a given market and at a given departure

time depend on speeds along the driver’s entire trajectory in spacetime. We model the pricing

algorithm as a flexible function from GP and HOT travel times into prices for each market. This

is an approximation of the true pricing algorithm, which we observe but which is difficult to use

directly in counterfactual simulations.2

We estimate the two stages of the demand model jointly using the simulated method of mo-

ments. The mean preference coefficients on price and travel time are identified using variation

from price rounding and car crashes, which shift prices and travel times when the driver is already

on the road. We also use morning precipitation, which increases the variance of prices and travel

times, as a beliefs shifter to identify drivers’ costs of being early and late to their destinations. In-

tuitively, if drivers’ disutility of being late is high, they will “buy more insurance” by shifting their

departure times earlier on mornings when it rains or snows. Finally, we identify the parameters

governing heterogeneous preferences for price and travel time by matching micro moments in the

toll transaction data. To focus on commuters, we estimate the model for southbound morning peak

hours.

We find that drivers have moderate preference heterogeneity and low scheduling costs. The

average driver is willing to pay $20.40 to avoid one hour of travel time, holding fixed her time

early and late. This value of travel time (VOTT) increases in the driver’s tract income and slightly

decreases in her car price. The 5th and 95th percentiles of the VOTT are $17.16 and $22.59,
respectively.3 Scheduling costs are relatively low, with the average driver willing to pay $3.53 to

avoid being one hour early and $4.33 to avoid being one hour late relative to her ideal arrival time.

In our first set of results, we compare welfare and other equilibrium outcomes with and without

tolling. We continue to focus on quantifying effects during the southbound morning commute. In

the no-toll counterfactual, there is the same total number of lanes as in the status quo, but all

lanes are free. We also decompose the welfare changes into two channels. The first channel, the

ex ante value, captures the value of product differentiation and allowing drivers to sort into priced

and free lanes based on their heterogeneous preferences. We compute the ex ante value as the

welfare change when tolling is available, but drivers must commit to their lane choices in the first

stage, under imperfect information. The second channel, the option value, is the additional value

2We use the true algorithm and algorithm inputs to reconstruct the unrounded prices. These unrounded prices
are then used to estimate both the price rounding regression discontinuity and the pricing algorithm approximation.

3A common benchmark for the value of travel time comes from the U.S. Department of Transportation, which
estimates the value of time spent on local personal travel (including commuting) as 50 percent of the median hourly
wage (Belenky, 2011). Our mean estimate is 62 percent of the $32.91 median hourly wage in the Seattle-Tacoma-
Bellevue metropolitan statistical area in May 2019 (Bureau of Labor Statistics, 2020).
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to drivers from being able to choose between the priced and free lanes in the second stage, after

the realization of uncertainty about prices and travel times.

We find that tolling modestly improves aggregate welfare by about $8,500 per day, driven in

large part by the option value channel. On average, I-405 drivers benefit from lower travel time,

time early, and time late. These time gains arise because tolling increases substitution to the outside

option, so that overall traffic on I-405 is lower than in the unpriced equilibrium. Substitution away

from I-405 is greatest during peak hours from 6–10 AM; we find little substitution toward driving

off-peak. Our decomposition tells us that more than 80 percent of the aggregate gain is due to

the option value channel. Intuitively, the option value is high because prices and travel times are

highly variable on this highway, even conditional on observables like the day of the week and the

weather. We note that this option value channel is somewhat unique to this form of congestion

pricing, where the free lanes are a closely substitutable unpriced alternative.

Moreover, these are not Lexus lanes: we find that tolling increases welfare across the income

distribution, and the greatest gains (+$5,000 per day) accrue to drivers in the bottom income

quartile. Low-income drivers benefit from both high ex ante values and high option values of tolling.

The differences in the ex ante value are stark: drivers in the lowest tract income quartile experience

an ex ante gain of about $2900 per year, while drivers in the remaining quartiles experience a small

total ex ante loss of about $1400 per year. As suggested by the descriptive evidence, these differences

are largely driven by the favorable trade-off between price and time savings faced by low-income

drivers who disproportionately travel the longest distances on I-405. Low-income drivers also have

high option values of tolling: drivers below the median tract income value the option at about $4500
per year, while above-median drivers value it about about half that. These patterns arise due to

differences in drivers’ preferences, which we expect to hold more generally outside of Washington

State. Since low-income drivers are more responsive to both price and travel time, they benefit

more from the ability to make their lane choices under full information.

In our last set of results, we simulate equilibrium outcomes under alternative pricing policies.

Raising the price ceiling from $10 to $12 is welfare-improving both in aggregate (increasing aggre-

gate welfare by an 20 percent relative to the status quo) and across the income distribution.4 The

higher price ceiling allows the algorithm more flexibility with which to manage high-traffic periods.

While lower-income drivers in longer markets face slightly higher prices than under the status quo,

these prices are still far from being proportional to the HOT time savings. We also explore two

forms of income-based pricing that are under consideration by the tolling authority: a 50 percent

proportional discount and a $2 flat discount for low-income drivers (Washington State Transporta-

tion Commission, 2021). We find that both forms of income-based pricing reduce toll revenues and

increase HOT travel times, reducing aggregate welfare relative to the status quo. However, to the

extent that transportation costs (in both time and money) already fall most heavily on low-income

drivers, policymakers may still value the redistributive potential of income-based pricing.

4The existing algorithm generates unrounded prices between 50 cents and $12. We consider a $12 price ceiling
in order to avoid extrapolating our approximation of the pricing algorithm beyond the data.
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Related literature This paper contributes to several strands of the literature. First, our paper

contributes novel empirical evidence on the efficiency and equity of highway toll lanes. A rich

theoretical literature has explored the heterogeneous welfare effects of tolling, extending the Vickrey

(1969) model of endogenous trip scheduling to incorporate heterogeneous drivers (Arnott, de Palma

and Lindsey, 1994), “value pricing” of a subset of the highway (Small and Yan, 2001; Verhoef and

Small, 2004; Small, Winston and Yan, 2006), and alternate forms of congestion (Hall, 2018). Recent

empirical work has used structural methods to analyze the distributional effects of tolling using

data from household travel surveys (Hall, 2020) and toll transactions (Mattia, 2022).5 Our paper

extends this literature in two ways. First, we link the rich transaction-level data on driver decisions

to characteristics of the same drivers. This allows us to explore heterogeneous welfare effects along

several dimensions, including (observable proxies for) income, geography, and the value of travel

time. Second, we model an additional welfare channel, the option value of tolling, which we estimate

to be quantitatively important, both in aggregate and for low-income drivers.

Another closely related area of the literature uses variation from highway toll lanes to esti-

mate driver preferences for travel time and reliability. Small (2012) reviews empirical estimates of

the value of travel time, an important input for valuing the time savings from both road pricing

and infrastructure improvements.6 By directly modeling drivers’ scheduling costs, we estimate the

distribution of the value of travel time holding fixed how early or late each driver is to her des-

tination. Moreover, it is understood that drivers care not just about mean travel times, but also

about their variance. Papers which estimate this value of reliability (Lam and Small, 2001; Small,

Winston and Yan, 2005; Brent and Gross, 2018) and the related value of urgency (Bento, Roth

and Waxman, 2024) have historically treated reliability as a reduced-form product characteristic

entering drivers’ route choice decisions. Our two-stage demand model generates this preference for

reliability from drivers’ first-stage departure time choice under imperfect information: drivers value

reliability because it reduces their realized scheduling costs in the second, route choice, stage.

Finally, a broader empirical literature studies the effectiveness and incidence of congestion

pricing in urban settings, rather than on highways. Research in this area has evaluated real-world

urban congestion pricing (Phang and Toh, 2004; Leape, 2006; Börjesson et al., 2012) and quantified

the aggregate welfare effects of counterfactual cordon pricing (Tarduno, 2022), time-of-day pricing

(Kreindler, 2024), distance-based and personalized pricing (Durrmeyer and Martinez, 2022), and

congestion surcharges on taxis and ridesharing (Arora, Zheng and Girotra, 2020; Rosaia, 2020).

Two recent papers have also evaluated cordon pricing (Herzog, 2024) and distance-based pricing

(Barwick et al., 2024) in longer-run equilibria incorporating both residential and mode (e.g., driving

vs. public transit) choices. They find that low-income commuters gain the most from these other

forms of congestion pricing, mirroring the results in our paper.7

5Hallenbeck et al. (2019) also conduct descriptive analysis of distributional effects using toll transaction data.
6Recent papers have also estimated the value of travel time in other settings, including residential choice (Su,

2022) and ridesharing (Buchholz et al., 2024; Goldszmidt et al., 2020).
7Other papers have estimated that a distance-based tax (i.e., a tax on vehicle miles traveled) would be regressive,

but less regressive than existing gas taxes (Martin and Thornton, 2018; Glaeser, Gorback and Poterba, 2022).
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Overview The remainder of the paper is organized as follows. Section 2 provides background on

how dynamic tolling works in our empirical setting. Section 3 describes our primary data sources.

Section 4 presents descriptive evidence on the aggregate and distributional effects of tolling. The

equilibrium model of driver demand, the road technology, and the pricing algorithm is presented in

Section 5 and estimated in Section 6. In Section 7, we evaluate welfare and other outcomes under

status-quo tolling and counterfactual pricing policies. Section 8 concludes.

2 The I-405 Express Toll Lanes

Our empirical setting is Interstate 405 (I-405) in Washington State, a well-trafficked highway which

connects several Seattle-area suburbs. Its tolled section, mapped in Figure B.15, runs north-south

for seventeen miles between Lynnwood and Bellevue, east of and across Lake Washington from

Seattle proper. Along this corridor, there are typically one to two high-occupancy/toll (HOT)

lanes and three to four unpriced general-purpose (GP) lanes in each direction. The priced lanes

run directly adjacent to the unpriced lanes, separated by double white lines.

The highway is designed so that drivers have a relatively accurate picture of current prices and

travel times (Figure A.1). Drivers may only enter or exit the toll lanes at designated access points,

which are typically available between every few interchanges, roughly every few miles.8 As drivers

approach each access point, they are shown the current prices on two sequential electronic signs.

Some but not all HOT access points also have electronic signs which show estimated travel times

in both the priced and unpriced lanes.

Prices vary dynamically across time, and are subject to both rounding and a floor and ceiling.

Tolling is in effect from 5 AM to 7 PM on weekdays, excluding major federal holidays.9 The pricing

algorithm is designed to maintain HOT speeds of at least 45 miles per hour for 90 percent of tolled

hours. That is, the objective of I-405 tolling is explicitly to reduce congestion rather than to raise

revenue. New prices are computed every five minutes using data on speed and throughput from

induction loops embedded in the pavement.10 Importantly for our identification strategy, while the

pricing algorithm initially calculates continuous toll rates, the prices actually faced by drivers are

rounded to the nearest 25 cents. Prices are also subject to both a 75-cent floor and a $10 ceiling;

we explore raising the ceiling in one of our policy counterfactuals.

Within a five-minute interval, prices also vary across “trip definitions”—where the driver enters

and exits the toll lanes—which form the basis of our market definition. The algorithm independently

computes prices for each trip definition. In particular, prices are non-additive across road segments,

so that the A to C toll is not necessarily equal to the sum of the A to B toll and the B to C toll.

8In practice, drivers sometimes illegally cross the double white lines separating the GP and HOT lanes rather
than entering and exiting solely at the designated access points. Most of the access points are short segments on
which the double lines are replaced with single dashed lines. There are also two ramps which provide direct access
to the HOT lanes from an interchange.

9Outside these hours, even single-occupancy vehicles can drive in the HOT lanes for free.
10Dynamic pricing is also used in other settings, including Uber surge pricing (Castillo, 2023; Castillo, Knoepfle

and Weyl, 2023) and revenue management in the airline (Williams, 2022), railroad (D’Haultfœuille et al., 2022), and
hotel (Cho et al., 2018) industries.
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We therefore define a market as a group of highway entry-exit pairs which share the same trip

definition.11 In each direction, there are fourteen markets, of which three do not have a feasible

HOT route. Section B.1 provides more details.

Paying vehicles have two ways to pay tolls, though we abstract away from this distinction in

the model. Most drivers pay using online accounts which are linked to transponders inside their

vehicles. However, drivers without transponders can still take the HOT lanes: their license plates

are photographed and they receive bills in the mail. An additional $2 fee is charged for “paying by

plate” in this way. Non-paying vehicles include buses, motorcycles, and high-occupancy vehicles

(HOV), which can drive in the HOT lanes for free. Drivers in this last group must have their

transponders set to the HOV setting.12

While our primary interest is in comparing the status quo to a counterfactual where all lanes

are general-purpose, in the case of I-405, HOT lanes actually replaced HOV rather than GP lanes.

In fact, the opening of the I-405 HOT lanes in September 2015 bundled together several policy

changes. First, along the entire corridor from Lynnwood to Bellevue, previously HOV-only lanes

were converted to HOV-plus-toll (i.e., HOT) lanes. Second, an entirely new HOT lane was built

between Woodinville and Bellevue, on the higher-trafficked southern half of the newly tolled section.

Third, occupancy requirements were increased. Vehicles with two occupants, which were previously

permitted to access the HOV lanes for free, were now required to pay the same toll as single-

occupancy vehicles during weekday peak hours. Vehicles with three or more occupants continued

to drive for free at all times.13

Section C.1 documents how average speed and throughput changed in the years surrounding the

opening of the HOT lanes. Aggregate speed and throughput increased in both the always-unpriced

GP lanes and the newly priced HOT lanes in the years after the HOT opening. In particular,

average throughput grew by a modest 5 percent in the GP lanes and a more substantial one-third

in the HOT lanes. However, because multiple policy changes were bundled together in the first year

after the opening, it is difficult to isolate the effect of pricing. These limitations in part motivate

the need for our structural model.

3 Data

We combine data on toll transactions, historical traffic conditions, and driver characteristics. Sev-

eral datasets were obtained in partnership with the Washington State Department of Transportation

(WSDOT) Tolling Division, which administers the I-405 HOT lanes. Our primary estimation sam-

11We assume that “the” trip definition for a given market is the one in which drivers take the HOT lanes for
as long as possible between their highway entry and exit. Each trip definition is associated with a unique market.
Most markets are associated with a single trip definition, but there are two exceptions in which there is a nontrivial
trade-off between two trip definitions, where one typically has both higher prices and higher HOT time savings. We
say that in these two markets, there are two HOT routes to choose from.

12In 2019, 41 percent of paid HOT transactions are paid by plate and 31 percent of all transactions are HOV.
13Initially, the HOT lanes were tolled at all hours, including nights, weekends, and holidays. The current tolled

hours were introduced in March 2016.
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ple is the calendar year 2019, the intersection of our data samples. Section B provides additional

details on data construction.

3.1 Toll transactions

We obtain data on the universe of I-405 HOT transactions in 2019 from WSDOT. For each trans-

action, we observe the trip definition, HOV status, price paid, and timestamps for each toll gantry

driven under during the trip. Each transaction is linked to an account identifier; we match a subset

of accounts to the Census tract of the account holder’s billing address and the make, model, and

year of her vehicle.14

Table 1: Paid transaction summary statistics

All Peak hours
Peak hours +
income proxies

p25 p50 p75 p25 p50 p75 p25 p50 p75

Trip attributes
Time saved (mins) 0.153 1.928 6.903 0.688 4.217 9.229 0.779 4.398 9.465
Price paid ($) 0.750 0.750 4.750 0.750 2.750 6.500 0.750 3.000 6.500
Price per min saved 0.467 0.914 5.694 0.459 0.733 2.107 0.457 0.721 1.949

Counts
Transactions 9,633,458 6,160,687 4,940,253
Unique drivers 1,123,028 746,706 530,000

Note: Each observation is a paid toll transaction. Southbound peak hours are 5 AM to 11 AM; northbound peak
hours are from 1 PM to 7 PM. The third set of columns, labeled “Peak hours + income proxies,” restricts to paid,
peak-hour transactions which are matched to at least one of a tract income or a car price.

Table 1 reports summary statistics of paid transactions. Our analysis restricts attention to peak

hours, which we define as southbound 5 AM to 11 AM and northbound 1 PM to 7 PM. In this sample

of 6.1 million transactions by about 747,000 unique drivers, the median time saved in the HOT

lanes is 4.2 minutes and the median price paid is $2.75. We identify the preference heterogeneity

parameters in the structural model by matching empirical covariances between income proxies and

these trip attributes. Further restricting to transactions that are matched to a tract income or a

car price results in 4.9 million transactions by 530,000 unique drivers.

3.2 Historical traffic conditions

We construct a panel of historical traffic conditions at the five-minute level and a panel of potential

market sizes at the daily level. Together, these two datasets describe the inputs to driver decision-

making.

1452 percent of HOT drivers are matched to a tract income; 39 percent are matched to a car price.
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Traffic conditions vary substantially across markets (groups of highway entry-exit pairs). Ta-

ble A.1 reports market lengths and median travel times and prices in each southbound market,

separately for peak and off-peak hours. Figure A.2 shows how travel times and prices vary by time

of day and across days in two example markets, one short and one long.

Prices and pricing algorithm inputs. We obtain historical rate cards and pricing algorithm

inputs from September 2015 to March 2022 from WSDOT. The rate cards show realized prices

which have been rounded to the nearest 25 cents. While WSDOT stores only the rounded prices, we

recover the algorithm-generated unrounded prices—which we will use in a regression discontinuity

design—using the algorithm source code, also shared by WSDOT. The algorithm inputs are a

processed version of the induction loop data, which we describe next.

Traffic sensor data. We add I-405 traffic sensor data from January 2011 to December 2021,

downloaded from the Washington State Transportation Center (TRAC)’s online TRACFLOW

tool. The sensors are induction loops embedded in the each lane, spaced out roughly every half

mile on the mainline, as well as on highway on- and off-ramps.

Each loop reports its average speed and throughput in each five-minute interval.15 The loop’s

throughput is the number of vehicles passing over it per unit of time. We are also interested in

traffic density, the number of vehicles per unit of distance, which the loops do not measure directly.

We approximate density (cars per lane per mile) at each loop in each five-minute interval by

dividing throughput (cars per lane per hour) by speed (miles per hour), following the transportation

literature (Hall, 2005). Section B.2 validates this approximation empirically; Section D.2 discusses

the theoretical relationships between speed, density, and throughput.

To turn speeds on road segments into market- and route-level travel times, we assume that travel

speed is constant within each segment (between two adjacent loops) and five-minute interval. When

computing HOT travel times, we additionally account for time spent in the GP lanes, for example

between the highway on-ramp and the HOT access point. Since markets group multiple highway

entry-exit pairs, we define “the” GP or HOT travel time in a market as the travel time between

the first highway entry and the last highway exit in the market.

Lastly, to compute the quantity of drivers departing (i.e., entering I-405) in each five-minute

interval in each market origin (not market), we sum the throughputs on all on-ramps for that

market origin.16

Tract-to-tract travel flows. We use historical travel flows between pairs of Census tracts aggre-

gated from cell phone GPS pings in 2019 to construct potential market sizes. These flows include

all forms of travel between a given tract pair—not only travel on I-405 or even only travel by

15The loop speeds are top-coded at 60 miles per hour; we replace top-coded speeds with freeflow speeds estimated
from the toll transaction data, which vary at the (loop, day of week, hour of day) level.

16An added complication is that each on-ramp contains both metered (general-purpose) and unmetered (carpool-
only) lanes, and the metered throughputs reflect rationed demand for departure times. Within each day and ramp,
we reallocate the metered throughputs so that they match the profile of unmetered throughputs. That is, we assume
that single-occupancy drivers demand the same distribution of departure times as carpooling drivers. Section B.5
discusses this procedure and assumption in more detail.
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car. We use GraphHopper’s routing API to group together pairs of tracts for which a particular

entry-exit pair on I-405 is one of the top three suggested routes. This procedure collapses realized

flows between Census tracts into potential flows between I-405 entries and exits, which become

our estimates of potential market sizes. Section B.4 discusses the procedure in more detail. The

resulting market sizes are at the (market, date) level.

Other price and travel time shifters. We use car crashes as additional shifters of realized

prices and travel times and precipitation as a shifter of drivers’ beliefs about prices and travel

times. The data on car crashes, obtained via a public disclosure request from WSDOT, contain

the date and time, the milepost, the location of first impact (i.e., which lane or shoulder, which we

use to determine whether the crash happened in the GP or HOT lanes), and other characteristics

for each crash in 2019. The precipitation data were collected by Automated Surface Observing

Systems (ASOS) and downloaded from Iowa State University’s Environmental Mesonet. We use

hourly precipitation (in inches) at the Everett weather station in 2019.17

3.3 Driver characteristics

Our primary driver characteristics are Census tract median household incomes and car prices, two

proxies for income. We take tract-level demographics, including income distributions, from the

2019 American Community Surveys (ACS). We estimate the manufacturer-suggested retail price

(MSRP) for each combination of car make, model, and year using data on vehicle registrations from

March 2017 to December 2022 from the Washington State Department of Licensing (WSDOL).

Section B.3 describes our procedure for estimating vehicle MSRPs.

We construct two samples of drivers, the HOT sample and the unconditional sample of potential

I-405 drivers. The HOT sample contains real-world drivers who are observed taking the I-405 toll

lanes at least once in 2019. These real-world drivers are linked to their tract incomes and car prices

via their billing addresses and car make-model-years. The unconditional sample contains simulated

drivers, drawn from the joint distribution of tract incomes and car prices in the population of

potential I-405 drivers. To construct this joint distribution, we sample Census tracts, weighting

by the tract-to-tract travel flows inferred from the GPS data, then sample vehicle registrations

conditional on tract; Section B.4 describes this procedure in more detail.

4 Descriptive evidence

In this section, we present a series of stylized facts on our empirical setting and discuss how they

motivate the key features of our model.

Fact 1: Travel times and prices are highly variable

For the full-length southbound market, the median HOT travel time is half the median GP travel

17ASOS is jointly operated by the National Weather Service, the Federal Aviation Administration, and the De-
partment of Defense. The Everett weather station is about 11 miles north of I-405’s northern terminus in Lynnwood.
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Figure 1: Prices and travel times by time of day (full-length SB market)

(a) Travel times
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Note: This figure documents travel times and prices for the full-length southbound market. Thick lines indicate
across-day medians and shaded areas are between the 25th and 75th percentiles. Each underlying observation is a
(route, 5 min, day) from 5 AM to 7 PM (tolled hours) in 2019 for trips from Lynnwood to Bellevue, the longest
southbound market.

time during peak hours, and the median price is at the $10 cap (Figure 1). However, there is a lot

of day-to-day variation. Between 8-8:05 AM, the 25th–75th percentile range of travel times is 37–52

minutes for GP lanes and 19–33 minutes for HOT lanes. While the HOT price in this full-length

market hit the cap at 8 AM on the majority of days, the 25th percentile of prices is $7.75.
This variation is not unique to the full-length market, and drivers in all markets face uncertainty

about prices and travel times when choosing when to get on the road, especially at peak hours.

Even conditional on season, day of week, and 5-minute interval, the coefficient of variation—i.e.,

the ratio of the standard deviation to the mean—for the average market is 0.23 for GP travel times

during peak hours. For HOT lanes, dynamic pricing helps reduce some of the variation in travel

times—the average coefficient of variation is 0.18—but prices themselves are highly variable, with

an average coefficient of variation of 0.41.18 While some drivers may use modern tools such as

Google Maps to monitor traffic conditions, route requests for departure times in the future show

a range of likely travel times rather than a precise estimate. (For example, Figure A.6 shows a

screenshot of a Google Maps search at 8:30 AM for a full-length trip departing at 9:30 AM with

an estimated travel time of “typically 30 min to 1 hr”.) This variation motivates the design of

our structural model, in which commuters choose when to drive with imperfect information on

traffic conditions and can then re-optimize between HOT and GP lanes once entering the road and

observing traffic conditions and HOT prices.

Fact 2: The potential value of HOT lanes is greater in longer markets, which dispro-

portionately serve lower-income drivers

18Figure A.5 plots the average coefficients of variation by market-hour. The coefficients of variation unconditional
on season, day of week, and 5-minute interval are each about twice as large as those presented here.
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HOT lanes are better deals for commuters in markets that traverse longer stretches of I-405. Rel-

ative travel times increase more slowly with distance in the HOT lanes than in the GP lanes, such

that HOT time savings are greatest in the longest markets.19 Figure 2a shows that from 7–8 AM—

the height of the southbound morning peak—the median time savings are less than two minutes in

the four shortest southbound markets with feasible HOT routes, compared to nearly twenty min-

utes in the full-length market. However, drivers in the longest markets do not pay proportionally

higher tolls. In Figure 2b, we show that the price per minute saved decreases in market length,

akin to a bulk discount. The median price per minute saved is $14.65 in one of the shortest markets

and only $0.48 in the full-length market.

Not only do the longest markets offer greater potential value, but lower-income drivers dispro-

portionately belong to these markets. Figure 2c plots the share of potential I-405 drivers in each

market, split by the quartile of their home tract median income. 61 percent of drivers from below

median income tracts are in one of the five longest markets, compared to just 36 percent of drivers

from above median income tracts. This pattern is qualitatively similar, though less extreme, when

drivers are instead divided into quartiles of car price (Figure A.3). This suggests that the spatial

distribution of drivers can act as a “tag” in the spirit of Akerlof (1978), i.e. an immutable (or,

at least, difficult to change) characteristic correlated with income that a social planner can use to

target assistance. Whether intentional or not, the current design of WSDOT’s pricing algorithm

effectively provides a better deal to the disproportionately lower-income drivers that travel longer

distances on I-405.20

Fact 3: Conditional on market, lower- and higher-income drivers choose HOT lanes

at similar rates and under similar conditions

Differences in aggregate conditions by geography are especially important because heterogeneity by

observable income measures appears to be modest. Figures 3a and 3b show that the tract incomes

and car prices of drivers taking the HOT lanes are similar to those in the broader population of

potential 405 drivers, suggesting lower- and higher-income drivers take the lanes at similar rates.

Figures 3c to 3f investigate how the attributes of HOT trips vary by income using binscatters of

tract income and car price against time saved and price paid.21 Comparing HOT trips within

the same market (in blue), those taken by higher-income drivers tend to have slightly higher time

savings and prices. These patterns are partially driven by drivers’ choices of when to take the toll

lanes. Comparing trips within the same market and hour (in pink), trips by higher-income drivers

have lower time savings and higher prices, suggesting that they are slightly more willing to pay to

avoid travel time once on the road. However, the differences are small in magnitude: conditional

on the market and hour, each $100,000 increase in a driver’s home tract income is associated with

19Unsurprisingly, travel times in both the GP and HOT lanes are the greatest in these long markets, with both
means and variances of travel times increasing in length of highway traveled (Figure A.4, panels a and b).

20The algorithm sets prices according to contemporaneous traffic conditions, but using worst-case (across road
segments traversed by the market) rather than average traffic conditions. The highest prices are found in markets
that traverse the highly congested northern half of the corridor, which has only one HOT lane compared to two in
the southern half. In these markets, the median price from 7–8 AM is at the $10 ceiling.

21Table A.2 reports corresponding regression estimates.
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Figure 2: HOT time savings, price per minute saved, and tract income by market

(a) HOT time savings (7–8 AM)
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(b) Log of price per minute saved (7–8 AM)
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(c) Tract median income of potential I-405 drivers
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Note: Figures show the distributions of HOT time savings from 7–8 AM (top panel), the log of price per minute
saved from 7–8 AM (middle panel), and potential drivers’ tract income quartiles (bottom panel) in each southbound
market. In the top two panels, the boxes indicate quartiles and the whiskers extend to the nearest observed data point
within a distance of 1.5 times the interquartile range (IQR) from the quartile. The bottom panel uses the median
tract income for the simulated sample of potential drivers in the market (whether or not they actually choose I-405),
which does not change hour-to-hour. Markets are ordered from shortest to longest. The three shortest markets have
no feasible HOT route.
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an increase in average time saved by 10.6 seconds and a decrease in average price paid by 0.9

cents. These relationships between income proxies and HOT trip characteristics will be important

moments for estimating our model. The modest relationships we document here foreshadow later

results showing only limited preference heterogeneity along these two proxies for income.

Fact 4: Lower- and higher-income drivers respond similarly to exogenous price changes

We use the price discontinuities at the 25-cent rounding thresholds as a source of exogenous variation

in prices. Unrounded prices on opposite sides of a threshold likely reflect similar underlying market

conditions, but are almost-randomly assigned to different realized prices. Figure 4a shows that the

total number of HOT transactions falls by about 1.5 trips per five minutes when the underlying

prices are rounded up rather than down. The average HOT quantity is 17.2 trips at this level, so the

drop in trips is about 6 percent of the average.22 Away from the threshold, average HOT quantities

increase in price, reflecting price endogeneity: higher unrounded prices are associated with higher

latent HOT demand. However, Figure 4b shows that the average tract income and vehicle MSRP

of drivers in the HOT lane is smooth through the threshold, implying that the price-marginal driver

is similar in their income proxies to the inframarginal drivers.

5 Model

Motivated by these descriptive facts, we develop an equilibrium model of highway traffic, with the

goal of creating a unified framework in which to conduct welfare analyses and simulate alternative

policies. In the model, drivers with heterogeneous preferences choose departure times in the first

stage and (priced or unpriced) routes in the second stage. Travel times and prices, which adjust in

equilibrium to clear the market, are determined respectively by the road technology and the pricing

algorithm.

The basic setup of the model is as follows. A market, indexed by m ∈ M, is a highway

entry-exit pair. It is possible that a given highway segment will be traversed by drivers from

multiple markets, but each driver belongs to exactly one market, which she takes as given. Drivers

choose between the unpriced and priced routes, indexed by j ∈ {0, 1}, in each market. Each day

t is independent; time of day h is discretized into five-minute intervals. Travel times, prices, and

quantities (of cars on the road) all vary at the (route j, market m, departure time h, day t) level.

5.1 Demand

In the demand model, drivers make sequential departure time and route choices each day. In the

first stage, departure times are chosen under imperfect information about traffic conditions. In

the second stage, this uncertainty is resolved and routes are chosen under full information. The

stages are described below in reverse order. This two-stage structure allows drivers to benefit from

22We exclude observations where the unrounded price is below the 75-cent price floor or above the $10 price ceiling,
as well as observations where rounding our reconstructed unrounded price does not yield the observed rounded price.
These dropped observations respectively account for 42 percent, 10 percent, and 2 percent of the original observations.
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Figure 3: Heterogeneity in HOT usage

(a) Driver tract income (b) Driver vehicle MSRP
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(d) Time saved and vehicle MSRP
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(e) Price and tract income
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(f) Price and vehicle MSRP
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Note: The density plots in the top two panels show marginal distributions of income proxies in the sample of potential
I-405 drivers (blue) vs. the sample of HOT drivers (pink, weighted by number of HOT trips taken). The bottom four
panels document the relationship between drivers’ income proxies and HOT trip characteristics. Each underlying
observation is a paid peak-hour toll transaction. The shaded areas correspond to 95 percent confidence intervals
estimated using Cattaneo et al. (2024).
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Figure 4: Demand response around price rounding thresholds
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(b) HOT driver characteristics
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Note: These figures plot coefficients from regression of HOT quantities or characteristics of HOT drivers on indicators
for bins of the unrounded price’s distance to the rounding threshold, estimated with threshold and interacted trip
definition-hour fixed effects. Observations are at the (trip definition, five-minute interval, day) level. Vertical lines
represent 95 percent confidence intervals.

tolling in two ways. Drivers who take the priced lanes benefit from realized time savings, which

they value more than the price they have to pay. Drivers who don’t take the priced lanes ex post

nonetheless derive option value from their existence ex ante, as they get to reoptimize in stage 2

after uncertainty about prices and travel times is resolved.

5.1.1 Stage 2: route choice

In the second stage, each driver observes the realizations of price and travel times at her cho-

sen departure time and optimally chooses between the unpriced and priced routes. Drivers have

heterogeneous preferences over prices, travel times, and time early or late to their destinations.

Consider a driver i in market m. At this stage, she has already chosen departure time h on

day t. Now that she is on the road, she observes the realized price pjhmt and travel time djhmt

(measured in hours) on each route j ∈ {0, 1}. Each driver i is endowed with an ideal arrival

time ηi ∈ [0, 24). This ideal arrival time combines with her chosen departure time and route to

determine her time early or late to her destination.23

Driver i chooses a route j ∈ {0, 1} to maximize stage 2 utility

ui,j|h,m,t = Ui,j|h,m,t + εi,j|h,m,t (1a)

Ui,j|h,m,t = α0
jm + αP

i pjhmt︸ ︷︷ ︸
price

+ αD
i djhmt︸ ︷︷ ︸
travel time

+ αE
i (h+ djhmt − ηi)−︸ ︷︷ ︸

time early

+ αL
i (h+ djhmt − ηi)+︸ ︷︷ ︸

time late

(1b)

23We only model travel on the highway of interest. Strictly speaking, the chosen departure time h is the time at
which the driver enters the highway, rather than the time she leaves home. Similarly, ηi is driver i’s ideal time at
which she exits the highway, rather than when she arrives at her destination.
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where for any scalar x, we denote the negative part by x− = −min (x, 0) and the positive part by

x+ = max (x, 0). The intercept term α0
jm captures the baseline attractiveness of route j in market

m. The coefficients
(
αD
i , α

E
i , α

L
i

)
are the opportunity costs of time driving, time early, and time

late, respectively.24 The stage 2 utility shocks
(
εi,j|h,m,t

)
j∈{0,1} are independently and identically

distributed type 1 extreme value.

Given this utility specification, driver i chooses route j with logit choice probability

πi,j|h,m,t =
expUi,j|h,m,t

expUi,0|h,m,t + expUi,1|h,m,t

To compute the aggregate market share of route j conditional on departure time h, we integrate

over the continuum of drivers who have chosen to depart at h:

sj|h,m,t =

∫
πi,j|h,m,t dFhmt(i) (2)

Finally, the expected value of departure time h conditional on the realizations phmt = (pjhmt)j∈{0,1}
and dhmt = (djhmt)j∈{0,1} is

EUihmt (phmt,dhmt) = log
[
expUi,0|h,m,t (d0hmt, p0hmt) + expUi,1|h,m,t (d1hmt, p1hmt)

]
5.1.2 Stage 1: departure time choice

In the first stage, each driver chooses a highway departure time or the non-highway outside option

given imperfect information about future prices and travel times. Drivers are forward-looking,

comparing their expected values of the different departure times.

Let H be a discrete set of highway departure times, and let h = ∅ denote the non-highway

outside option. On day t, drivers in market m have common beliefs Ghmt (phmt,dhmt) about the

joint distribution of prices and travel times at each departure time h ∈ H. There are additionally

time-varying shocks ξhmt to demand for different departure times, which are common across drivers

in the market.

Driver i chooses h ∈ H∪{∅} to maximize stage 1 utility uihmt. The utility from the non-highway

outside option is normalized to ui∅mt = εi∅mt. The utility from departure time h is

uihmt = Uihmt + ξhmt + εihmt (3a)

Uihmt = β0m + β1m

∫
EUihmt (phmt,dhmt) dGhmt (phmt,dhmt) (3b)

The primary component of utility from departure time h is the expected value of departing at

h, where the expectation is now additionally taken over drivers’ beliefs about prices and travel

times. The stage 1 utility shocks (εiht)h∈H∪{∅} are independently and identically distributed type

24Section D.1 discusses the microfoundation of this utility specification.
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1 extreme value.

Driver i chooses departure time h with logit probability

πihmt =
exp {Uihmt + ξhmt}

1 +
∑

h′∈H exp {Uih′mt + ξh′mt}

and the overall market share of departure time h is

shmt =

∫
πihmt dFm(i) (4)

5.2 Road technology

Our road technology model embeds a static relationship between traffic density and traffic speed

inside a model of traffic dynamics in space and time. Highway travel is a congestible good: as the

density of vehicles on the road increases, vehicles are forced to slow down in order to maintain safe

following distances, resulting in lower speeds. By additionally incorporating dynamics, we allow

drivers to impose congestion externalities on other drivers traveling not only at the same location

and time, but also at other locations and times.25 The road technology, which maps quantities of

drivers on the road to travel times, encodes the technological constraints on the supply of highway

travel.

We model the highway as a sequence of links indexed by l ∈ {1, . . . , L}, each divided into

(GP and HOT) routes j ∈ {0, 1}. Each link l has length λl in miles, and each pair of route j and

link l has width κjl, representing the number of lanes. Time of day is discretized into five-minute

intervals of the form [h, h+∆h); dates are indexed by t.

The “static” speed-density relationship holds at every (discrete) point in space and time.26

Speed vjlht, in miles per hour, and density ρjlht, in cars per lane-mile, are constant within each

route j, link l, five-minute interval h, and date t. Speed is a function of contemporaneous density

and a speed shock ψjlht:

vjlht = V (ρjlht, ψjlht)

We assume that the mapping V (·, ψjlht) is decreasing in density and does not vary across space

or time on our highway of interest. The speed shocks are exogenous and capture idiosyncratic

deviations from speeds predicted by density alone. For example, drivers on a particular segment at

a particular time might be comfortable traveling at higher speeds with shorter following distances.

25Previous research on the supply-side costs of congestion, which dates back to Walters (1961), has focused on the
estimation of road “supply curves” mapping quantities of vehicles into travel times. Recent papers have estimated
these supply curves using rich cross-sectional (Couture, Duranton and Turner, 2018; Akbar et al., 2023) and time
series (Mangrum and Molnar, 2018; Yang, Purevjav and Li, 2020; Russo et al., 2021) variation. Combined with a
corresponding demand curve mapping travel times into quantities, analysis using the classical Pigou (1920) framework
captures the externalities imposed on other drivers traveling at the same location and at the same time as the focal
driver. These “static” congestion costs are amplified in our model of traffic dynamics in space and time.

26Section D.2 discusses the theoretical relationships between speed, density, and throughput.
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To close the road technology model, we describe how speeds and densities on road segments are

related to travel times and quantities in markets.27 As Figure A.7 illustrates, travel times depend

on speeds along the entire length of highway traversed and along the entire time interval taken.28

Similarly, drivers contribute to traffic densities along their entire trajectories. For each driver who

departs on route j in market m at time h′, let hjlmh′t and hjlmh′t denote the (continuous) times

at which she respectively enters and exits link l. The density in route j on link l is obtained by

summing the cars there from different markets and departure times, then dividing by the total

lane-miles:

ρjlht =
1

κjl × λl

∑
m∈M

∑
h′∈H

∣∣[hjlmh′t, hjlmh′t) ∩ [h, h+∆h)
∣∣

∆h︸ ︷︷ ︸
fraction of interval [h, h+∆h)
in which drivers departing at h′

in market m are on link l

× qjh′mt︸ ︷︷ ︸
mass of

departures at h′

in market m

5.3 Pricing algorithm

Finally, the pricing algorithm maps (current and potentially past) traffic conditions into prices. In

principle, traffic conditions on any link can affect the market m price—for example, if prices in a

given market depend on traffic downstream of the segment traversed in that market.

In our empirical setting, the primary pricing algorithm inputs are contemporaneous densi-

ties and speeds in both the unpriced (j = 0) and priced (j = 1) routes. Let (ρht,vht) =

(ρjlht, vjlht)j∈{0,1},l∈{1,...,L} denote the vectors of densities and speeds in each route and on each

link at time h. The pricing algorithm computes HOT prices using market m-specific functions Pm:

p0hmt ≡ 0 (5a)

p1hmt = Pm (ρht,vht) (5b)

6 Estimation

The demand, road technology, and pricing algorithm components of the equilibrium model are each

estimated separately using data from the southbound morning commute in 2019. First, on the de-

mand side, we estimate drivers’ heterogeneous preferences for highway travel via the simulated

method of moments. Second, for the road technology, we estimate an asymmetric logistic relation-

ship between density and speed. Finally, we approximate the pricing algorithm using market-specific

cubic polynomials of GP and HOT travel times into prices. Our data sample throughout is the

southbound morning peak, 5–11 AM, in 2019.

27We use a discretized “hydrodynamic” model, in the spirit of the canonical model of Lighthill and Whitham
(1955) and Richards (1956), which treats the flow of vehicles analogously to the flow of fluids in physical models.

28We model speeds and densities for an additional two hours after the end of the departure time choice set H,
assuming there are no departures in these two hours. If a trip still has not concluded by then, we assume the remaining
distance is traveled at freeflow speed.
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6.1 Demand

We estimate the demand model using the simulated method of moments. The primary estimands

are drivers’ mean preferences for prices, travel times, and time early and late to their destinations—

which are identified using plausibly exogenous shifters of price and travel time—and parameters

governing preference heterogeneity—which are identified by matching micro moments in the toll

transaction data.

Two features of our setting preclude us from directly applying the Berry, Levinsohn and Pakes

(1995) method of estimating random-coefficients logit demand models. First, the two stages of

the demand model—departure time choice and route choice—are closely linked, requiring joint

estimation to account for drivers selecting into departure times based on unobservables. Second,

we lack full data on market shares in the two stages: we observe departure time quantities at the

market origin—not market—level, and we observe HOT but not GP route quantities at the market

level. Our approach addresses these data limitations by aggregating demand shocks up to the

market origin level and using route quantities rather than route shares in the moment conditions.

6.1.1 Parameterization

We begin by augmenting the demand model with additional parametric assumptions on drivers’

choice sets, preferences, and beliefs. Our empirical model is of the morning commute for drivers

traveling southbound on I-405. Drivers choose from departure times h ∈ H spaced out every five

minutes from 5 AM to 10:55 AM.

In stage 2, drivers have heterogeneous preferences over price and travel time, as well as het-

erogeneous ideal arrival times. Let xi be a vector containing driver i’s tract income and car price.

Drivers’ price and travel time coefficients vary observably with their characteristics and with an

unobservable normally distributed component, while their time early and time late coefficients are

homogeneous: [
αP
i

αD
i

]
∼ N

([
αP + µα,P · xi

αD + µα,D · xi

]
, Σα,PD

)
αE
i ≡ αE

αL
i ≡ αL

Driver characteristics in xi are expressed in deviations from the population mean, so that the

common coefficients α represent population means. Drivers share common route intercepts α0
jm;

without loss of generality, we normalize the GP route intercepts in each market to zero.29 Ideal

arrival times ηi are normally distributed with mean η calibrated to 8:30 AM and estimated standard

deviation ση, truncated to the interval between 5 AM and 12 PM.

In stage 1, the primary estimands are the “inside good” intercepts, which control how attrac-

tive drivers in each market find I-405 relative to the non-405 outside option. Motivated by data

29The HOT intercepts capture across-market differences in the convenience of the HOT route. For example, one
of the HOT access points is a direct access ramp to the EvergreenHealth medical complex in Totem Lake. GP drivers
exiting at Totem Lake must take a different off-ramp, which requires additional driving on suburban roads to get to
the medical center.
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limitations, we assume that demand shocks ξhmt and inside good intercepts β0m vary only at the

level of market m’s origin:

ξhmt ≡ ξh,orig(m),t β0m ≡ β0orig(m)

This dimension reduction is necessary because we observe departure time quantities only at the

market origin, not market, level. We also fix the stage 1 coefficients β1m on the stage 2 expected

value at one in all markets. This assumption, which is not without loss of generality, amounts to

imposing that the stage 1 and stage 2 logit shocks have the same scale parameter. Importantly,

even though the first-stage preference parameters are homogeneous, each driver i’s expected value

EUihmt (phmt,dhmt) from departure time h still depends on her own specific second-stage preference

parameters (αi, ηi).

For the purpose of estimation, when drivers form beliefs about prices and travel times in stage 1,

they observe the quarter of the year (i.e., the season), the day of week, and the presence or absence

of morning precipitation.30 We estimate the joint distribution of prices and travel times in each

market, conditional on quarter, day of week, and precipitation, in a first offline step. Section E.1

describes this procedure.

Putting it all together, the estimands of the demand model are collected in the vector θ =(
αP , αD, αE , αL, µα,P , µα,D,Σα,PD,

(
α0
1m

)
m∈M ,

(
β0a
)
a∈A , σ

η
)
, where market origins are indexed

by a ∈ A.

6.1.2 Price and travel time shifters

Next, we describe three sources of plausibly exogenous variation in prices and travel times, which

we use to identify drivers’ average preferences for prices and travel times and their scheduling costs.

We think of the first two, price rounding and car crashes, as shifting realized prices and travel times

in stage 2, when the driver is already on the road and is choosing between the GP and HOT routes.

We think of the third, precipitation, as shifting drivers’ beliefs about prices and travel times in

stage 1, when she is choosing when to drive.

Price rounding We leverage the price discontinuities at the 25-cent rounding thresholds to

identify drivers’ mean price responsiveness. As shown above in Figure 4b, average HOT transactions

drop discontinuously by 1.5 trips per five minutes at the price rounding threshold (about 6 percent

of the average number of transactions). In principle, the price discontinuity can also affect realized

travel times via the discontinuous effect on HOT demand. However, this effect is dampened because

travel times depend on demand in both the current five-minute interval (which does respond to this

period’s price rounding) and future five-minute intervals (which does not). Figure A.8 shows that

realized HOT time savings do not exhibit a similar discontinuity at the price rounding threshold.

30In counterfactual simulations, we model drivers as having rational expectations—that is, correct beliefs—about
prices and travel times.
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Moreover, we argue that the discontinuous drop in HOT quantity is not due to drivers updating

their beliefs about imperfectly observed travel times. A subset of HOT access points have additional

electronic signs displaying estimated travel times in the GP and HOT routes. While the HOT

quantity discontinuity persists after restricting to trip definitions which have these signs, again, the

sign-reported HOT time savings are smooth around the price rounding threshold (Figure A.9).

Car crashes We identify drivers’ disutility from travel time using variation from car crashes.

Crashes are negative technology shocks, effectively temporarily reducing highway capacity. This in

turn results in lower speeds and higher travel times, and in equilibrium, also higher prices. The

net effect on HOT time savings depends on whether the crash occurred in the GP or HOT lane.

To quantify the effects of GP and HOT crashes on travel times, prices, and HOT quantities, we

estimate

yhmt ∼ GP crashhmt +HOT crashhmt + tripDefm × hourht (6)

On the right-hand side, we construct indicators for “intersecting” GP and HOT crashes. We define

a crash as intersecting a given trip definition at a given time if the crash happened downstream of

the trip definition’s HOT access point and no more than an hour before the focal time. Observations

are at the (five-minute interval h, trip definition m, day t) level.31

Table A.3 reports the estimated coefficients. Compared to GP crashes, HOT crashes result in

smaller increases in time savings (+0.85 minutes vs. +1.14 minutes) and larger increases in prices

(+$1.21 vs. +$0.72). As a result of this unfavorable trade-off, HOT crashes also result in smaller

increases in average HOT trips (+0.59 vs. +1.05 trips per five minutes).

Precipitation Finally, we use precipitation, which increases the variance of travel times and

prices (Figure A.10), to identify drivers’ costs of arriving early or late to their destinations. The

direction and extent to which drivers shift their departure times in response is informative about

the direction and extent of asymmetry in these scheduling costs. If drivers find it much more costly

to be late than to be early, then they will choose to depart much earlier on rainy days to avoid

potentially incurring those costs.

We find limited departure time responses to this increase in variance, suggesting that drivers

have relatively low and slightly asymmetric scheduling costs, with time late slightly more costly than

time early. On days with positive precipitation during the morning peak (5–11 AM), the shares of

early morning departures increase and the shares of peak-hour departures decrease (Figure A.11a).

However, the magnitudes of these differences are extremely small (Figure A.11b).

31We exclude the 0.11 percent of observations in which the crash causes WSDOT to close the HOT lanes altogether,
which include but are not limited to closures due to very severe crashes.
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6.1.3 Estimation and identification

The two stages of the demand model are estimated jointly using the simulated method of moments.

The population mean preference parameters are identified using variation from the price and travel

time shifters—price rounding, crashes, and precipitation—described above in Section 6.1.2. The

preference heterogeneity parameters are identified by matching moments from the toll transaction

data, which we first saw in the descriptive evidence in Section 4.

Joint estimation of the two stages is necessary because of the tight link between the two stages

in the demand model. The second-stage parameters are needed to construct the expected value

of each departure time in the first-stage utility (3). However, the second stage can’t be estimated

alone because drivers may select on unobservables into different departure times: for example,

drivers who select into departing during peak hours may have lower values of travel time and

higher scheduling costs.32

We adapt the approach of Berry, Levinsohn and Pakes (1995) to evaluate the moment conditions

at each candidate parameter vector θ. At each candidate θ, we first compute Uihmt(θ), the expected

value of departure time h, for each simulated driver, market, and date. Let Ma denote the set of

markets with origin a. For each origin a and date t, we solve a system of nonlinear equations for

the vector of demand shocks
(
ξ̂hat(θ)

)
h∈H

that rationalize the observed departure time quantities

qhat:

qhat︸︷︷︸
departure time h

quantity in
market origin a

=
∑

m∈Ma

qmt︸︷︷︸
market
m size

×
(
1

I

I∑
i=1

exp {Uihmt(θ) + ξhat}
1 +

∑
h′∈H exp {Uih′at(θ) + ξh′at}

)
︸ ︷︷ ︸

departure time h
share in market m

(7)

This is done by iterating a BLP-like contraction mapping. Then we use the candidate parameters

θ and the implied demand shocks ξ̂hat(θ) to predict demand. Note that the vector of unknown

demand shocks is at the market origin level.33

A key challenge is that we only observe departure time quantities at the market origin—not

market—level, from data on throughputs on highway on-ramps. This data limitation affects our

estimation approach in both stages of the demand model. In stage 1, during the BLP inversion (7)

of market shares to demand shocks, we are only able to recover demand shocks ξ̂hat at the market

origin a level. In stage 2, since we additionally do not observe GP quantities at the market level,

we are unable to compute GP and HOT route shares conditional on departure times. Instead, we

match moments of HOT route quantities in each market, which we do observe in the toll transaction

data.

We summarize the following primary moment conditions. In the first stage, we use precipitation

32This selection on unobservables can also be seen in equation (2) for the market share of route j in departure time
h, where the choice probabilities are integrated over the driver distribution Fhmt(i) conditional on choosing departure
time h.

33We approximate the distribution of driver types using I = 100 simulated drivers in each market. Driver
characteristics are sampled from the unconditional distribution described in Section 3.3.
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as a traditional method of moments instrument, imposing that it is independent of unobserved de-

mand for departure times. In the second stage, we match reduced-form coefficients from regressions

of HOT quantity on indicators for price rounding and crashes. To identify the parameters gov-

erning preference heterogeneity, we match micro moments of driver characteristics and HOT trip

attributes (price paid and time saved) in the toll transaction data. For example, the covariances

between a driver’s income proxies and the price she pays in her toll transactions are informative

about the slope coefficients µα,P governing how drivers’ price coefficients vary with their incomes.

Section E.2 describes the full set of moment conditions in greater detail.

6.1.4 Estimated preferences

Table A.4 reports the estimated demand parameters. The average driver is willing to pay αD/αP =

$20.40 to avoid one hour of travel time. Figure 5 shows there is modest heterogeneity in the value

of travel time (VOTT), αD
i /α

P
i . Drivers in the 5th and 95th percentiles of VOTT are willing to

pay $17.16 and $22.59, respectively, to avoid an hour of travel time. Drivers’ VOTTs are positively

correlated with tract incomes and negatively correlated with car prices (Figure A.12). Scheduling

costs are relatively low: the average driver is willing to pay αE/αP = $3.53 to avoid being one hour

early to her destination and αL/αP = $4.33 to avoid being one hour late. The standard deviation

of ideal arrival times, ση, is 61 minutes.

Figure 5: Estimated value of travel time distribution

Note: This figure shows the estimated distribution of drivers’ value of travel time, αD
i /α

P
i . Each underlying obser-

vation is a simulated driver from the unconditional distribution of driver characteristics.

6.1.5 Discussion

Our empirical demand model comes with important caveats and limitations, which we discuss

now in the context of estimation. Section 7 discusses further implications for our simulations of

counterfactual equilibria.
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First, we assume drivers have perfect information about prices and travel times when they

are on the road. In theory, drivers do perfectly observe prices from the electronic signs displayed

at each HOT access point (Figure A.1). Moreover, in Section 6.1.2, we tested whether drivers

infer HOT time savings from prices in the price rounding regression discontinuity; we found that

the discontinuous drop in HOT quantity at the price rounding threshold persists when restricting

attention to trip definitions with electronic signs displaying estimated travel times. In practice,

however, there may still be drivers who misread the signs or are otherwise confused about how

tolling works on I-405. To the extent that such drivers—who are confused or have less-than-perfect

information about traffic conditions once they are already on the road—are common, our revealed

preference approach will tend to underestimate drivers’ responsiveness to prices and travel times.

We also abstract away from HOV drivers and carpooling choices. This abstraction does not

present a problem for estimation if two assumptions hold. First, drivers must take their carpooling

status as exogenously given. Second, HOV drivers’ preferences over non-price attributes must not

be systematically different from those of single-occupancy vehicle (SOV) drivers with the same

income proxies. We restrict attention to paid HOT trips in both the descriptive analysis and the

structural estimation, so those taken by HOV drivers are not included in the paid HOT quantities

(not market shares) that enter into the demand moment conditions. We will explore relaxing the

second assumption above in future versions of this paper.

There are also potentially important dimensions of heterogeneity that are not included or not

estimated in the current version of the model. We estimate heterogeneous preferences for price

and travel time, which vary observably along income proxies and unobservably. However, we

do not estimate heterogeneity in scheduling costs or in the distribution of ideal arrival times.34

Heterogeneity of this form can in principle be identified using additional data on how departure

times (and departure time responses to beliefs shifters like precipitation) vary by driver income

proxies.35 True preferences may also vary within drivers, across days. For example, a morning

trip to the airport is likely to involve both a different ideal arrival time and higher scheduling

costs.36 If drivers’ true ideal arrival times are very different from day to day, then we will tend

to underestimate scheduling costs. To identify parameters governing within-driver variation, we

would additionally match moments in the toll transaction data on the variability of attributes of

HOT trips taken by the same driver.

Finally, we model a medium-run choice problem in which agents decide only when and where

they drive. In the long run, households have more margins of adjustment. Workers may rearrange

34Using survey data from California SR 91 and the National Household Travel Survey, Hall (2020) estimates that
drivers’ values of travel time are negatively correlated with their scheduling costs. That is, higher-income drivers,
who have higher values of time, also have more flexible schedules.

35The Puget Sound Regional Council (PSRC) Household Travel Surveys are a promising source of these data, with
detailed travel diaries linked to household characteristics. Our preliminary analysis of the 2019 travel diaries shows
that the mean morning departure time does not differ substantially by household income in the Seattle metro area.
However, the variance of morning departure times is higher for low-income households. Though realized departure
times are not the same as ideal arrival times, this suggests that the first-order heterogeneity in ideal arrival times is
in the variance rather than the mean.

36In principle, this within-driver variation is another source of HOT option value.
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their morning schedules—both earlier and later—in response to traffic conditions, which could

lead us to underestimate drivers’ true costs of early and late arrivals. Additionally, households

may change where they live and work—that is, choose the I-405 market they participate in—in

response to changes in transportation policy. Our utility specification includes market-specific

HOT intercepts α0
1m, which absorb across-market differences in tastes for HOT lanes. However,

our demand estimates may be biased if preferences for price, travel time, and time early and late

also vary systematically across markets in a way that is not captured by preference heterogeneity

along income proxies.

6.2 Road technology

To take the road technology model to the data, we estimate the static speed-density relationship

specific to I-405. Additionally, in our model of traffic dynamics, we discretize I-405 into L = 2

links, corresponding to the congested northern half, which has a single HOT lane, and the more

free-flowing southern half, which has two HOT lanes.37

The primary empirical object is the speed-density relationship, which is different on every road.

It depends on physical factors, including the hilliness of the terrain, the pavement materials and

quality, and the presence of medians or other dividers. At each density, we expect speeds to be lower

on single-lane, back-country roads than on multilane highways. It also depends on the geometry of

the road network: highways, which feature relatively uninterrupted traffic flows, are able to support

higher freeflow speeds than dense urban road networks.

We assume the following asymmetric logistic functional form (Wang et al., 2011) mapping traffic

density ρjhlt into traffic speed vjhlt:

vjlht = v +
v − v[

1 + exp
(
ρjlht−ρ∗

δ1

)]δ2 + ψjlht (8)

The estimands are the jam speed v and the freeflow speed v (the lower and upper asymptotes,

respectively), a scale parameter δ1, a parameter δ2 which controls the degree of asymmetry, and a

critical density ρ∗ at which traffic transitions from freeflow to congested.

Speed is flat at very low density levels, then decreases convexly in density before finally leveling

off.38 We estimate equation (8) on 2019 loop data from the southbound morning peak. Each

observation is a (route j, loop l, five-minute interval h, day t). Figure 6 shows the best-fit curve

in pink over a random sample of speeds and densities in blue; Table A.5 reports the estimated

parameters. The freeflow speed is v = 63.9 miles per hour, slightly above the speed limit of 60

miles per hour. Speed begins to fall at the critical density, ρ∗ = 26 cars per lane-mile, which

37The first, northern link is 8.1 miles long and averages 2.4 GP lanes. The second, southern link is 8.2 miles long
and averages 3.2 GP lanes.

38The initial flatness is partially an artifact of replacing the top-coded speeds, as the freeflow speeds replacing
them are estimated at the less granular (loop, day of week, hour of day) level. However, it is unlikely that average
speeds are much higher than 70 miles per hour even when densities are extremely low.
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Figure 6: Density vs. speed

Note: The figure shows a random sample of 5000 southbound observations, where each observation is a (loop, five-
minute interval, date) from 5–11 AM in 2019. Top-coded speeds have been replaced with estimated freeflow speeds.
The pink curve is the estimated asymmetric logistic speed-density relationship.

corresponds to a car-following distance of 2.15 seconds at freeflow speed. The jam speed is v = 7.6

miles per hour.

6.3 Pricing algorithm

We approximate WSDOT’s pricing algorithm using a third-order polynomial of travel times in the

unpriced and priced routes, estimated separately for each market. While we observe the true pricing

algorithm, its inputs are not easily generated in equilibrium simulations. This approximation is

imperfect because realized travel times are a function of traffic conditions not only at the time of

departure, but also future traffic conditions. In contrast, the price is set using only information

about traffic conditions that is known at departure time. The R2 values in these regressions range

from 0.669 in one of the short markets to 0.933 in one of the long markets.

Prices increase in both GP and HOT travel times, though they increase more steeply in HOT

travel times. Figure A.13 shows scatter plots of unrounded prices versus GP travel times, HOT

travel times, and HOT time savings in three markets, ordered from longest to shortest. The

algorithm-generated unrounded prices in this figure vary between 50 cents and $12; they have not

yet been rounded to the nearest 25 cents or constrained to above the 75-cent price floor and below

the $10 price ceiling. Longer markets have greater variation in both travel times and prices. In

the full-length market, Lynnwood to Bellevue, the freeflow travel time is about 15 minutes and

unrounded prices increase steeply to an average of $10 by the time the HOT travel time is about 25

minutes. In the shortest tolled market, Kirkland to Bellevue, the unrounded price is nearly always

at its 50-cent lower bound, regardless of travel times in either route.

Since our estimated polynomials are an approximation of the true pricing algorithm, we intro-
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duce price shocks ϕjhmt that capture the difference between our predicted unrounded price and

the observed unrounded price. We rewrite the pricing equation (5) for our empirical analysis as:

p0hmt ≡ 0 (9a)

p1hmt = P̃m (dhmt) + ϕ1hmt (9b)

where P̃m denotes the estimated polynomial approximation in market m, which maps travel times

dhmt in both the GP and HOT lanes into predicted unrounded prices.

7 Welfare analysis

Armed with our estimated parameters, we now turn to evaluation of status-quo tolling and alterna-

tive pricing policies. First, we show that low-income drivers indeed gain the most from status-quo

tolling, which benefits drivers across the income distribution but creates winners and losers by

geography. Second, we quantify the option value of tolling, which is an important component of

welfare gains both in aggregate and for low-income drivers. Finally, we compare status-quo tolling

to two types of policy-relevant alternative designs: raising the $10 price ceiling and instituting

income-based pricing.

7.1 Aggregate and distributional effects of status-quo tolling

We begin by evaluating the aggregate and distributional effects of the current tolling policy. We

find that tolling is aggregate welfare-improving and benefits drivers in nearly all income groups, but

particularly drivers in the bottom income quartile. We argue that this is achieved by transferring

surplus from relatively high-income drivers in short markets to relatively low-income drivers in long

markets.

To do this, we simulate equilibria under two regimes: no toll and status-quo pricing. In the no-

toll counterfactual, drivers still choose between two routes in stage 2, but both routes are free.39 The

status quo simulation uses the approximation of the pricing algorithm estimated in Section 6.3. We

simulate equilibria using the demand shocks that rationalize the observed departure time shares—

that is, by performing the BLP-like inversion (7) at the estimated demand parameters θ̂.40 We

include utility from all drivers, including those who choose the non-405 outside option; the utility

of these non-405 drivers is normalized to zero.

We estimate that status-quo tolling increases aggregate welfare in the southbound morning peak

by about $8,500 per day or $2.2 million per year, relative to a world in which the same number of

lanes are all free. Table 2 reports aggregate outcomes under the two regimes. Status-quo tolling

39Maintaining two free routes in the no-toll counterfactual ensures that our welfare differences are not driven by
differences in maximizing over one versus two draws from the extreme value distribution.

40We also simulate new draws of normally distributed speed shocks ψjlht and price shocks ϕjhmt, where the
variances of these shocks are estimated as the variances of the residuals of the speed-density equation (8) and the
pricing equation (9).
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reduces total driver surplus by about $29,100 per day, but net welfare increases after recycling the

$37,600 per day in collected toll revenue. In the status quo, drivers who take I-405 pay an average

of 77 cents per day in tolls, but face face lower average travel times (−1.4 minutes) and arrive

closer to their ideal arrival times (−2.2 minutes early and −0.9 minutes late) than in the no-toll

counterfactual. These time savings primarily arise from reduced mid-morning (6–10 AM) traffic;

those drivers largely substitute toward the outside option (+3.2 percentage points) rather than to

driving in the early or late morning.

Table 2: Aggregate outcomes under no toll vs. status-quo tolling

No toll Status quo Change

Stage 1 shares
Outside option 0.459 0.496 +0.036
5–6 AM 0.046 0.045 −0.001
6–7 AM 0.070 0.065 −0.005
7–8 AM 0.121 0.111 −0.010
8–9 AM 0.130 0.118 −0.011
9–10 AM 0.099 0.094 −0.005
10–11 AM 0.075 0.072 −0.004

Stage 2 shares
GP 1.000 0.721 −0.279
HOT 0.000 0.279 +0.279

Average I-405 outcomes
Price paid ($) 0.000 0.766 +0.766
Travel time (mins) 14.727 13.350 −1.377
Time early (mins) 24.694 22.453 −2.241
Time late (mins) 12.712 11.851 −0.861

Welfare
Driver surplus ($K/day) 236.313 207.250 −29.062
Toll revenue ($K/day) 0.000 37.590 +37.590
Net welfare ($K/day) 236.313 244.841 +8.528

Note: The stage 2 shares and average I-405 outcomes are conditional on choosing I-405—that is, conditional on
not choosing the non-405 outside option. The welfare values sum across all drivers, including those who choose the
outside option. Average time early averages zeros (if the driver is late) and positive values (if the driver is early); the
same is true for average time late.

Moreover, we find that low-income drivers gain the most from status-quo tolling, which benefits

drivers across the income distribution. Table 3 reports changes in the same outcomes split by

tract income quartile. After uniform redistribution of toll revenues, net welfare in the bottom tract

income quartile increases by $5,000 per day, or about 59 percent of the $8,500 aggregate welfare

gain. Conditional on choosing I-405, drivers in the bottom quartile pay the highest average tolls

($1.30 per day) but save the most in travel time (−2.3 minutes), time early (−4.5 minutes), and

time late (−1.5 minutes) relative to in the unpriced equilibrium; they also take the HOT lanes
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at the highest rate (38 percent). Drivers in the top three quartiles experience smaller reductions

in travel time, time early, and time late. While status-quo tolling incentivizes substitution to the

outside option in the top three tract income quartiles, drivers in the bottom quartile take I-405

slightly more frequently under tolling. Table A.7 documents that, consistent with the suggestive

evidence presented in Section 4, bottom-quartile drivers face the highest travel times and incur the

greatest scheduling costs in the unpriced equilibrium. Status-quo tolling dampens but does not

eliminate these patterns.41

Table 3: No toll vs. status-quo tolling differences by tract income quartile

Q1 Q2 Q3 Q4

Stage 1 shares
Outside option +0.002 +0.015 +0.053 +0.072
5–6 AM −0.001 0.000 −0.001 −0.002
6–7 AM −0.004 −0.004 −0.006 −0.008
7–8 AM +0.001 −0.004 −0.014 −0.021
8–9 AM −0.002 −0.003 −0.018 −0.021
9–10 AM +0.002 −0.001 −0.007 −0.013
10–11 AM +0.002 −0.003 −0.007 −0.007

Stage 2 shares
GP −0.379 −0.299 −0.237 −0.210
HOT +0.379 +0.299 +0.237 +0.210

Average I-405 outcomes
Price paid ($) +1.300 +0.756 +0.585 +0.460
Travel time (mins) −2.286 −1.422 −1.032 −0.836
Time early (mins) −4.487 −1.987 −1.593 −1.055
Time late (mins) −1.484 −0.864 −0.622 −0.519

Welfare
Driver surplus ($K/day) −3.995 −7.419 −8.772 −8.877
Toll revenue ($K/day) +12.252 +9.898 +8.099 +7.342
Net welfare ($K/day) +4.998 +1.902 +0.601 +1.027

Note: This table reports differences in outcomes between the no-toll counterfactual and status-quo tolling (corre-
sponding to the third column of Table 2) separately by quartiles of tract income. The quartiles generate different
amounts of toll revenue, but the net welfare values assume uniform redistribution of that toll revenue across all
drivers.

The large gains for low-income drivers are largely driven by geography, a dimension along

which status-quo tolling does create losers. We documented in Section 4 that low-income drivers

disproportionately live in the longest markets. Figure 7 shows that tolling transfers surplus from

relatively high-income drivers in short markets to relatively low-income drivers in long markets.

The magnitudes of these transfers are substantial, ranging from a $3,200 per day loss in one of

41The results in this paragraph are all qualitatively similar when drivers are instead split by car price quartile
(Table A.6).
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the shortest markets to a $8,500 per day gain in the full-length market—almost identical to the

aggregate welfare gains obtained by summing across all markets. Drivers in short markets face

low HOT time savings at relatively high prices, so they frequently experience the downsides of

increased GP congestion and rarely enjoy the faster HOT lanes. This is especially the case in the

three shortest southbound markets, for which there is no feasible HOT route altogether.

Figure 7: Aggregate welfare changes by market

Note: This figure shows differences in aggregate welfare between the no-toll counterfactual and the status quo,
separately for each southbound market. Markets are ordered from shortest to longest.

Discussion Before proceeding, we describe the key assumptions and limitations of our equilibrium

simulations and discuss how they affect the interpretation of these results.

The first assumption, which has the most bite, is that we abstract away from HOV drivers.

When we simulate the status-quo equilibrium, the lack of HOV trips means that simulated travel

times, and hence simulated prices, are low in the HOT lanes. Our current estimates therefore

overestimate the time saved in the HOT lanes and underestimate the price paid, though we also

underestimate the total revenue generated from tolling, which is redistributed uniformly among

potential I-405 drivers in our welfare calculations.42

Additionally, our simulations hold the value of the non-405 outside option fixed across coun-

terfactual equilibria. In reality, the welfare gains from tolling on I-405 could be partially offset

by welfare losses from increased congestion on substitute roads and highways. However, these

offsetting effects are unlikely to change our finding that low-income drivers gain the most from

status-quo tolling, because lower-income drivers tend to participate in markets with lower shares

of the outside option. Table A.4 shows that the estimated inside good intercepts, which control the

baseline attractiveness of I-405 relative to the outside option, are higher for more northern—and

relatively lower-income—market origins.

42The underestimate of toll revenue is due almost entirely to underestimating the intensive margin (the average
price paid) rather than the extensive margin (the number of paid trips).
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Finally, in these counterfactuals, drivers choose new departure times and routes, but they do

not make long-run adjustments like rearranging their morning schedules or changing where they

live or work. Our results should therefore be interpreted through the lens of this medium run, in

which households only make decisions about driving. Endogenizing the longer-run responses would

likely amplify the effects of introducing congestion pricing.43

7.2 Ex ante and option values of tolling

Next, we decompose the welfare changes from status-quo tolling into two channels, the ex ante

value and the option value of tolling. Since drivers make departure time choices in the first stage

of the demand model under imperfect information, they derive option value from being able to

reoptimize their route choices in the second stage, after the uncertainty is resolved. The ex ante

value captures the value of tolling in the absence of this ability to reoptimize. Since it also accounts

for the re-equilibration of GP travel times after the introduction of tolling, it can be positive or

negative, while the option value is positive by construction.

To quantify these two welfare channels, we compute welfare in an intermediate scenario with

full first-stage commitment. In this intermediate step, drivers continue to face status-quo prices

and travel times, but they must commit to both their departure time and route choices in stage 1,

before they observe the realizations of prices and travel times in stage 2. A driver’s option value

from tolling is the difference between her status-quo welfare and her welfare under commitment.

The ex ante value is the remaining difference between welfare under commitment and welfare in

the no-toll counterfactual.44

Table 4: Ex ante and option values of tolling in aggregate and by tract income quartile

By tract income quartile

Aggregate Q1 Q2 Q3 Q4

Ex ante value ($K/day) +1.598 +2.933 −0.520 −0.619 −0.195
Option value ($K/day) +6.930 +2.065 +2.423 +1.220 +1.222

We find that the option value is an important driver of aggregate welfare gains from status-quo

tolling: we estimate its aggregate value to be about $6,900 per day, accounting for 81 percent of

the overall gains of $8,500 per day. The ex ante value makes up the remaining $1,600 per day in

aggregate. Table 4 reports ex ante and option values in aggregate and by tract income quartile;

Figure A.14 shows how this decomposition varies across markets. Drivers in the bottom half of

tract incomes have higher option values of tolling (+$2,100 to +$2,400 versus about +$1,200), but
43Recent empirical papers which model joint commuting, employment, and residential choice find that congestion

pricing incentivizes households to reduce their commuting distances and substitute away from commutes through
highly congested areas (Herzog, 2024; Barwick et al., 2024).

44Note that this is not a counterfactual equilibrium: we do not recompute equilibrium prices and travel times in
this commitment world. Instead, the thought experiment is that one driver at a time is forced to go about her highway
travel under full first-stage commitment. Since each driver is small and can’t affect aggregate traffic conditions by
herself, the equilibrium prices and travel times are unchanged.
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the option value is largely similar in dollar terms across markets. On the other hand, there is

substantial variation in ex ante values across both income quartiles and markets. Drivers in the

bottom tract income quartile have the highest ex ante values of tolling (+$2,900 per day), while the

ex ante values of drivers in the top three quartiles are negative. These differences are again driven

by geography: the ex ante value is large and negative in relatively high-income short markets and

large and positive in relatively low-income long markets.

To summarize, low-income drivers benefit from both high ex ante values and high option values

of tolling. They disproportionately participate in long markets, where HOT time savings are high

and prices are relatively low, resulting in high ex ante values. Moreover, since low-income drivers

are less willing to pay to avoid travel time, they are more marginal when deciding between the GP

and HOT routes. As a result, they benefit more from being able to make that choice under full

information about the trade-offs.

7.3 Alternative pricing policies

Finally, we compare status-quo tolling to two types of alternative pricing policies that are currently

under consideration by WSDOT:

1. Higher price ceiling: As of October 2023, WSDOT is considering raising the $10 price

ceiling to $15 or $18 in order to control increasing HOT congestion and make up revenue lost

during the pandemic (Lindblom, 2023). We simulate a counterfactual equilibrium in which the

price ceiling is $12. We consider this more modest increase in order to avoid extrapolating our

pricing algorithm approximation beyond the historical unrounded prices, which are capped

at $12.

2. Low-income discount: In 2021, theWashington State Transportation Commission (WSTC)

conducted a study exploring options for a potential Low-Income Tolling Program (Washington

State Transportation Commission, 2021). We evaluate two versions of income-based tolling

that they consider in that study: a 50 percent discount and a $2 per trip discount.45 In our

counterfactual simulations, drivers in the bottom quartile of tract income are eligible for this

discount.46

Table 5 reports how (departure time and route) market shares, prices and travel times, and welfare

change under these alternative policies relative to the status quo. We report both aggregate changes

and changes for drivers in the bottom tract income quartile, who are targeted for the low-income

discounts.
45The WSTC study considers three additional options: a fixed toll credit per month, a fixed number of free

toll trips per month, and a lower price ceiling for low-income drivers only. In April 2023, the San Francisco Bay
Area Metropolitan Transportation Commission began piloting its own income-based tolling program, Express Lanes
START, which offers low-income drivers a 50 percent discount (Metropolitan Transportation Commission, 2023).

46The most common eligibility criterion, both considered in the WSTC study and actually in place in the Bay
Area, is that the driver’s household income is less than 200 percent of the federal poverty line. We do not directly
observe household incomes, so we choose this 25th percentile cutoff for tract median household income based on ACS
estimates that 23.3 percent of Washington State households had incomes below 200 percent of the federal poverty
line in 2019 (KFF, 2023).
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Table 5: Changes in outcomes under alternative policies

Raise price
ceiling to $12

Low-income
50% discount

Low-income
$2 discount

Agg Q1 Agg Q1 Agg Q1

Stage 1 shares
Outside option 0.000 −0.001 +0.001 −0.030 −0.001 −0.035
5–6 AM 0.000 0.000 +0.000 +0.001 +0.000 +0.002
6–7 AM +0.000 +0.000 +0.001 +0.007 +0.001 +0.006
7–8 AM +0.000 +0.001 +0.000 +0.010 +0.002 +0.011
8–9 AM 0.000 0.000 −0.001 +0.011 −0.001 +0.011
9–10 AM 0.000 +0.000 −0.001 +0.003 −0.001 +0.004
10–11 AM +0.000 +0.001 −0.001 0.000 0.000 +0.002

Stage 2 shares
GP −0.002 −0.001 +0.010 −0.034 −0.003 −0.049
HOT +0.002 +0.001 −0.010 +0.034 +0.003 +0.049

Average I-405 outcomes
Price paid ($) +0.031 +0.052 −0.311 −0.448 −0.222 −0.336
Travel time (mins) −0.101 −0.179 +0.650 +1.221 +0.415 +0.713
Time early (mins) −0.144 −0.268 +0.954 −0.185 +0.591 −0.261
Time late (mins) +0.011 +0.020 +0.391 −0.247 +0.378 +0.092

Welfare
Driver surplus ($K/day) +0.346 +0.259 +0.523 +1.442 +2.445 +2.526
Toll revenue ($K/day) +1.325 +0.425 −10.534 −1.512 −8.891 −1.506
Net welfare ($K/day) +1.671 +0.576 −10.011 −1.079 −6.446 +0.399

Note: This table reports changes in outcomes under alternative policies relative to the status quo, computed both in
aggregate and for the bottom tract income quartile. In both cases (aggregate and Q1), we sum market shares and
welfare across all drivers. The net welfare values assume uniform redistribution of toll revenue across all drivers.

Raising the price ceiling to $12 is welfare-improving both in aggregate and across all quartiles of

tract income and car price. The greater flexibility afforded by this higher ceiling allows the pricing

algorithm to more efficiently manage peak congestion without substantially increasing average

prices paid. Under the higher ceiling, drivers pay very slightly higher average tolls (+3 cents per

day) and face a small increase in time late (+0.011 minutes), but obtain modest reductions in

average travel time (−0.101 minutes) and time early (−0.144 minutes). Aggregate welfare gains

are $1,700 per day higher. Drivers in the bottom tract income quartile, who drive the longest

distances on I-405, also gain relative to the status quo. They also pay very slightly higher average

tolls (+5 cents per day) and face a small increase in time late (+0.020 minutes), but enjoy larger

reductions in average travel time (−0.179 minutes) and time early (−0.268 minutes).

While both versions of the low-income discount increase welfare relative to the completely

unpriced equilibrium, they are worse than the status quo, in aggregate and even for the targeted

drivers in the bottom tract income quartile. Under these discounts, low-income drivers still impose
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the same externality on other drivers as their high-income peers do, but they pay less, incentivizing

them to take the toll lanes inefficiently often. Under the 50 percent discount, the HOT share

for bottom-quartile drivers increases (+3.4 percentage points); these HOT trips also shift toward

the most congested part of the morning, when prices and HOT time savings are high and the 50

percent discount is large in absolute terms. Under the $2 per trip discount, the HOT share for

bottom-quartile drivers increases even more (+4.9 percentage points), but these HOT trips shift

toward the early and late morning, when congestion is relatively low. Both forms of income-based

tolling result in higher travel times and lower toll revenue to be redistributed.

While we have so far evaluated realistic modifications to status-quo tolling, a natural next

question is how all of these pricing schemes compare to first-best pricing of all of the lanes. This

analysis, which is computationally intensive, is ongoing. The additional gains from first-best pricing

are likely to be large. The current pricing algorithm, whose objective is to keep HOT speeds above

45 miles per hour, deviates from optimal pricing in several key ways. First and most obviously,

only a subset of the highway lanes are tolled, so congestion externalities remain unpriced in the GP

lanes. Second, while the second-best pricing scheme would seek to maximize the welfare of drivers

in all lanes by setting prices in the toll lanes, the existing algorithm cares only about drivers in the

toll lanes. Third, guaranteeing a minimum speed need not be welfare-maximizing even for drivers

in the toll lanes.

Nonetheless, though it may be far from first-best in aggregate terms, status-quo tolling on I-405

demonstrates the feasibility of implementing highway congestion pricing in a way that benefits

drivers across the income distribution.

8 Conclusion

This paper studies the aggregate and distributional effects of highway congestion pricing, which is

often thought to be regressive. We show that in our empirical setting, it is actually low-income

drivers who gain the most from status-quo tolling. Low-income drivers have high ex ante values

of tolling because they drive the longest distances on our focal highway, in markets where time

savings in the toll lanes are high and prices are relatively low. At the same time, these drivers, who

are less willing or able to pay to avoid travel time, also derive considerable value from having the

option but not the obligation to pay for speed.

While discussion of the potential regressiveness of congestion pricing often focuses on how

low-income drivers must spend a greater fraction of their incomes on congestion fees, our results

highlight that low-income drivers often also bear the greatest costs of unpriced traffic congestion.

In many urban and suburban areas around the United States, high housing costs have pushed

low-income households to live increasingly far away from job centers, where they must both drive

longer distances to work and drive more often due to limited public transit. While in our setting,

low-income drivers do pay higher tolls on average than other drivers—even in dollars, not only

as a share of their incomes—we nonetheless find that congestion pricing is less regressive than

35



completely unpriced congestion.

Our findings also point to the importance of the option value channel, which is relevant in

potentially many other settings. The trade-off between paying with time versus paying with money

is not unique to highway tolling. Both Uber and Lyft offer riders the choice between a more

expensive trip with a faster pickup and a cheaper trip that requires additional waiting time. At

airports, travelers can pay for CLEAR Plus in order to skip long airport security lines. Even at

Disney theme parks, the Genie+ program allows paying customers access separate, faster “Lightning

Lanes” for rides. In any setting where there is uncertainty about future prices or travel or wait

times, even market participants who are unlikely to pay ex ante may still value having the option

to pay if it turns out to be necessary ex post.
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A Additional figures and tables

A.1 Setting and data

Figure A.1: Example HOT access point

Note: This photograph shows an HOT access point on southbound I-405 just after the State Route 527 interchange.
There are two GP lanes on the right and one HOT lane on the left. The GP and HOT lanes are separated at the
bottom of the frame by double white lines; the access point is toward the top of the frame, where the double white
lines become a single dashed line where drivers may legally cross. Above this access point, an electronic sign displays
prices for travel to each downstream HOT access point (i.e., prices for each trip definition that begins at this access
point). Source: Ken Lambert, The Seattle Times, https://www.seattletimes.com/seattle-news/transportation/
a-15-toll-how-about-18-wsdot-may-blow-the-lid-off-i-405-express-lane-prices/
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Table A.1: Southbound median traffic conditions by market

GP travel time
(mins)

HOT travel time
(mins)

Time savings
(mins)

Price ($)

Market
Length
(miles)

Peak Off-peak Peak Off-peak Peak Off-peak Peak Off-peak

KK 0.7 0.7 0.7 – – – – – –
BB 1.1 1.2 1.5 – – – – – –
WW 1.9 5.2 1.9 – – – – – –
TK 3.2 4.3 3.2 4.0 3.2 0.1 0.0 1.75 0.75
LL 3.3 4.0 3.3 3.8 3.3 0.0 0.0 5.25 0.75
WT 4.4 8.5 4.5 8.3 4.5 0.0 0.0 0.75 0.75
KB 4.4 5.2 5.0 4.8 4.4 0.3 0.4 0.75 0.75
TB 1 6.9 9.1 7.6 7.8 6.9 0.9 0.6 0.75 0.75
TB 2 6.9 9.1 7.6 6.9 6.9 2.1 0.7 1.75 0.75
WK 7.0 12.2 7.1 11.5 7.1 0.3 0.0 0.75 0.75
LW 7.4 14.6 7.6 13.0 7.6 0.8 0.0 5.25 0.75
LT 10.0 18.2 10.2 10.7 10.0 6.5 0.2 5.00 0.75
WB 10.7 16.8 11.7 14.3 10.8 2.3 0.7 0.75 0.75
LK 12.6 22.5 12.9 14.0 12.6 7.6 0.2 5.25 0.75
LB 16.3 27.6 17.6 16.5 16.3 10.3 1.2 5.25 0.75

Note: Each observation is a (market, route, five-minute interval, day). Southbound peak observations are from 5
AM to 11 AM; off-peak observations are from 11 AM to 7 PM. Markets are ordered from shortest to longest. The
three shortest southbound markets do not have a feasible HOT route. The Totem Lake to Bellevue market appears
in two rows, labeled TB 1 and TB 2, because it has two HOT routes. The length in miles is equal to the travel time
in minutes when traveling at the 60 mph speed limit.
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Figure A.2: Travel time and price variation in two markets

(a) Travel time: short market
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(b) Travel time: long market
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(c) Price: short market
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(d) Price: long market
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Note: Figures show variation in travel time and price by route and time of day. In each five-minute interval, the thick
line indicates the across-day median and the shaded area is between the 25th and 75th percentiles. Each underlying
observation is a (market, route, five-minute interval, day) from 5 AM to 7 PM (tolled hours) in 2019. The short
market is Totem Lake to Kirkland, the shortest southbound market with a feasible HOT route. The long market is
Lynnwood to Bellevue, the longest southbound market.
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A.2 Descriptive evidence

Figure A.3: Driver markets by car price quartile
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Note: Each underlying observation is a simulated driver in the unconditional sample of potential I-405 drivers.
Markets are ordered from shortest to longest.
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Figure A.4: Travel times and prices by market, 7–8 AM

(a) GP travel time

KK BB WW TK LL WT KB TB WK LW LT WB LK LB

Market

0

10

20

30

40

50

60

70

80

G
P

 t
ra

v
el

 t
im

e 
(m

in
s)

(b) HOT travel time
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(c) HOT price
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Note: Figures show the distributions of GP travel times (top panel), HOT travel times (middle panel), and HOT
prices (bottom panel) from 7–8 AM in each southbound market. Boxes indicate the 25th percentile, median, and
75th percentile. Lower whiskers extend to the lowest observed data point that is within a distance of 1.5 times the
interquartile range (IQR) from the 25th percentile. Likewise, upper whiskers extend to the highest observed data
point within 1.5 times the IQR from the 75th percentile. Markets are ordered from shortest to longest. The first
three markets have no feasible HOT route.
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Table A.2: HOT trip attributes vs. driver income proxies

(1) (2) (3)

Time saved Price paid
Log price

per min saved

Controls: none
Tract income −0.0129 −0.0088 −0.0004

(0.0001) (0.0001) (0.0000)

Car price −0.0095 −0.0028 0.0008
(0.0002) (0.0001) (0.0000)

Controls: market
Tract income 0.0007 0.0015 0.0000

(0.0001) (0.0001) (0.0000)

Car price 0.0006 0.0018 0.0002
(0.0002) (0.0001) (0.0000)

Controls: market × hour
Tract income −0.0018 0.0001 0.0001

(0.0001) (0.0000) (0.0000)

Car price −0.0009 0.0010 0.0003
(0.0001) (0.0001) (0.0000)

Note: Each underlying observation is a paid peak-hour toll transaction. Southbound peak hours are 5 AM to 11 AM;
northbound peak hours are from 1 PM to 7 PM. Time saved is in minutes, price paid is in dollars, and the log of
price per minute saved is in base 10.
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Figure A.5: Coefficient of variation by market-hour

(a) GP travel time
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(b) HOT travel time
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(c) HOT price
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Note: Figures show the average coefficient of variation—i.e., the standard deviation divided by the mean—for travel
times and prices by market-hour, conditional on the calendar quarter and day of week. Markets are ordered by
shortest (at the top) to longest (at the bottom). The three shortest markets have no feasible HOT route.

Figure A.6: Sample Google Maps query

Note: Figure shows an example of the range of travel times Google provides when requesting routing information
for one hour later the same morning. The shown route traverses the full length of I-405 with HOT lanes. Google
Maps travel times are for the GP lanes. The image was taken at 8:30AM on August 29th, 2023 for a trip leaving at
9:30AM.
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A.3 Model

Figure A.7: Example trajectories in spacetime

Note: This figure depicts example trajectories for a driver traveling from milepost 0 to milepost 2 at different starting
times. Each trajectory begins at a green dot and ends at a red dot. In each shaded rectangle, the slope of the driver’s
trajectory equals the speed at that discretized location and time.
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A.4 Estimation

Figure A.8: Realized HOT time savings by distance to price rounding threshold
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Note: This figures plots coefficients from a regression of HOT time savings on indicators for bins of the unrounded
price’s distance to the rounding threshold, estimated with threshold and (trip definition, hour) fixed effects. Ob-
servations are at the (trip definition, five-minute interval, day) level. Data are subset to southbound 5–11 AM and
northbound 1–7 PM.
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Figure A.9: Price rounding discontinuity: trip definitions with travel time signs

(a) HOT quantity
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(b) Sign-reported HOT time savings
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Note: These figures plot coefficients from regressions of HOT quantity (top panel) and sign-reported HOT time
savings (bottom panel) on indicators for bins of the unrounded price’s distance to the rounding threshold, estimated
with threshold and (trip definition, hour) fixed effects, estimated only on trip definitions with travel time signs.
Observations are at the (trip definition, five-minute interval, day) level. Data are subset to southbound 5–11 AM
and northbound 1–7 PM.
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Figure A.10: Travel times and prices with and without precipitation

(a) GP travel time
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(b) HOT travel time
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(c) Price
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Note: These figure shows the distributions of GP travel times (top panel), HOT travel times (middle panel) and
prices (bottom panel) during the morning peak (5–11 AM) in each southbound market, comparing hours with zero
precipitation to hours with positive precipitation. Boxes indicate the 25th percentile, median, and 75th percentile.
Lower whiskers extend to the lowest observed data point that is within a distance of 1.5 times the interquartile range
(IQR) from the 25th percentile. Likewise, upper whiskers extend to the highest observed data point within 1.5 times
the IQR from the 75th percentile. Markets are ordered from shortest to longest. The first three markets have no
feasible HOT route.
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Table A.3: Effects of GP and HOT crashes

(1) (2) (3)
Time
savings

Price
HOT

quantity

GP crash 1.137 0.723 1.048
(0.017) (0.010) (0.038)

HOT crash 0.854 1.207 0.586
(0.037) (0.020) (0.057)

Note: This table reports coefficient estimates from equation (6), which includes (trip definition, hour) fixed effects.
Price is denominated in dollars and time savings in minutes. Heteroskedasticity-robust standard errors are in paren-
theses.

Figure A.11: Five-minute departure time shares with and without precipitation
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(b) Levels

5 6 7 8 9 10

Departure hour

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

A
v
er

a
ge

 5
-m

in
d
ep

a
rt

u
re

 t
im

e 
sh

ar
e

AM has precip

False

True

Note: These figures plot coefficients from a regression of departure time shares on hour indicators and hour × AM
precipitation interactions, estimated including market origin fixed effects. Each observation is a (market origin, 5-
minute interval, date).
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Table A.4: Demand parameter estimates

(a) Stage 2 coefficients

Income heterogeneity (µα)
Covariance (Σα) of

unobserved heterogeneity

Mean (α) Tract income Car price Price Travel time

Price −1.112 −0.0014 0.0084 0.0026 0.0179

Travel time −22.673 −0.0451 0.2890 0.0179 0.6088

Time early −3.920 – – – –

Time late −4.817 – – – –

(b) Stage 1 and stage 2 intercepts

Inside good
intercepts (β0)

HOT intercepts (α0) by market destination

L W T K B

Lynnwood 8.402 −0.065 −0.950 0.138 2.154 1.652

Woodinville 5.019 – – −1.977 1.557 0.716

Totem Lake 1 3.812 – – – −1.334 −0.481

Totem Lake 2 3.812 – – – −1.334 −0.031

Kirkland −0.815 – – – – −0.350

Bellevue −0.464 – – – – –

(c) Ideal arrival time distribution

Mean (η, not estimated) 8:30 AM

Standard deviation (ση) 1.016 hours

Note: These tables report demand parameter estimates. In panel a, the time variables—travel time, time early,
and time late—are measured in hours. Tract income and car price are expressed in deviations from the population
mean, in thousands of dollars. In panel b, the market origins and destinations are ordered from northernmost to
southernmost. Totem Lake appears twice because the Totem Lake to Bellevue market has two HOT routes.
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Figure A.12: Value of travel time vs. income proxies

Note: Figures show how drivers’ values of travel time vary with their tract incomes and car prices. Each point is a
simulated driver from the unconditional distribution of driver characteristics.

Table A.5: Speed-density relationship parameter estimates

Param Description Estimate

v Jam speed 7.567
(0.017)

v Freeflow speed 63.932
(0.006)

δ1 Scale 2.495
(0.012)

δ2 Asymmetry 0.100
(0.001)

ρ∗ Critical density 26.194
(0.015)

Note: This table reports estimates of the parameters of the asymmetric logistic speed-density relationship (8),
estimated via nonlinear least squares. Heteroskedasticity-robust standard errors are in parentheses.
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Figure A.13: Travel time vs. unrounded price

(a) Lynnwood to Bellevue

(b) Totem Lake to Bellevue

(c) Kirkland to Bellevue

Note: Each figure shows a random sample of 5000 observations, where each observation is a (market, five-minute
interval, date) from 5–11 AM in 2019. The markets are ordered from longest to shortest.
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A.5 Welfare analysis

Table A.6: No toll vs. status-quo tolling differences by car price quartile

Q1 Q2 Q3 Q4

Stage 1 shares
Outside option +0.033 +0.037 +0.041 +0.035
5–6 AM −0.001 −0.002 −0.001 −0.001
6–7 AM −0.007 −0.005 −0.006 −0.003
7–8 AM −0.008 −0.012 −0.012 −0.006
8–9 AM −0.009 −0.012 −0.013 −0.012
9–10 AM −0.003 −0.004 −0.005 −0.008
10–11 AM −0.005 −0.003 −0.003 −0.004

Stage 2 shares
GP −0.282 −0.284 −0.265 −0.285
HOT +0.282 +0.284 +0.265 +0.285

Average I-405 outcomes
Price paid ($) +0.769 +0.789 +0.704 +0.801
Travel time (mins) −1.433 −1.371 −1.240 −1.467
Time early (mins) −2.229 −2.403 −2.100 −2.224
Time late (mins) −0.761 −1.031 −0.762 −0.873

Welfare
Driver surplus ($K/day) −5.840 −7.435 −7.715 −8.072
Toll revenue ($K/day) +9.202 +9.039 +9.371 +9.979
Net welfare ($K/day) +2.935 +2.529 +1.702 +1.362

Note: This table reports differences in outcomes between the no-toll counterfactual and status-quo tolling (corre-
sponding to the third column of Table 2) separately by quartiles of car price. The quartiles generate different amounts
of toll revenue, but the net welfare values assume uniform redistribution of that toll revenue across all drivers.
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Table A.7: No-toll outcomes by tract income quartile

Q1 Q2 Q3 Q4

Stage 1 shares
Outside option 0.573 0.413 0.426 0.432
5–6 AM 0.069 0.041 0.035 0.040
6–7 AM 0.085 0.065 0.063 0.069
7–8 AM 0.081 0.135 0.136 0.128
8–9 AM 0.078 0.155 0.138 0.144
9–10 AM 0.063 0.122 0.095 0.113
10–11 AM 0.052 0.068 0.106 0.075

Stage 2 shares
GP 1.000 1.000 1.000 1.000
HOT 0.000 0.000 0.000 0.000

Average I-405 outcomes
Price paid ($) 0.000 0.000 0.000 0.000
Travel time (mins) 21.753 16.100 11.810 9.816
Time early (mins) 38.691 24.686 19.620 16.795
Time late (mins) 16.164 12.270 11.662 10.987

Welfare
Driver surplus ($K/day) 57.229 78.944 50.948 49.192
Toll revenue ($K/day) 0.000 0.000 0.000 0.000
Net welfare ($K/day) 57.229 78.944 50.948 49.192

Note: This table reports outcomes in the no-toll counterfactual in levels (corresponding to the first column of Table 2),
separately by quartiles of tract income. The quartiles generate different amounts of toll revenue, but the net welfare
values assume uniform redistribution of that toll revenue across all drivers.

Figure A.14: Ex ante and option values of tolling by market

Note: This figure shows differences in aggregate welfare between the no-toll counterfactual and the status quo,
decomposed into ex ante and option values of tolling, separately for each southbound market. Markets are ordered
from shortest to longest.
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B Data appendix

B.1 Market definitions

In order to define our set of markets, we introduce some additional terminology.
An interchange is a location on the highway where drivers can travel between I-405 and other

roads or highways. Moving from north to south in Figure B.15, the interchanges on the tolled
section of I-405 are: I-5, SR 527, NE 195th St, SR 522, NE 160th St, NE 128th St, NE 124th St,
NE 116th St, NE 85th Pl, NE 70th Pl, SR 520, NE 8th St, NE 6th St, and NE 4th St. Each
interchange may include multiple on- and off-ramps. For example, the SR 520 interchange has on-
and off-ramps to and from both eastbound and westbound SR 520.

We call a group of interchanges a town. We define the following five towns, again moving from
south to north:

• Lynnwood: all points north of the I-5 interchange on SR 525, I-5, and SR 527
• Woodinville: NE 195th St, SR 522, and NE 160th St
• Totem Lake: NE 128th St, NE 124th St, and NE 116th St
• Kirkland: NE 85th Pl and NE 70th Pl
• Bellevue: SR 520, NE 8th St, NE 6th St, NE 4th St, and all points south of NE 4th St on
the untolled section of I-405

Finally, a market combines a direction of travel with an entry town and an exit town. The
entry town and exit town may be the same: for example, travel from I-5 to SR 527 occurs in the
southbound Lynnwood to Lynnwood market. The exception is travel from Totem Lake to Totem
Lake, which is infeasible in both directions. There are therefore fourteen markets in each direction.

Taking the HOT route is not feasible in every market. We say that the HOT route is feasible
in a given market if there is a way for drivers to enter the highway at an on-ramp, enter the HOT
lanes at a legal access point (indicated by a white triangle in Figure B.15), exit them at a legal
access point (indicated by a black triangle in the same figure), and finally exit the highway at an
off-ramp. The HOT route is feasible in the southbound Lynnwood to Lynnwood market: drivers
can enter I-405 at the I-5 interchange, enter the HOT lanes at the topmost white triangle, exit them
at the topmost black triangle, and finally exit I-405 at the SR 527 interchange. It is not feasible in
the southbound Bellevue to Bellevue market, as there are no legal HOT entry points south of SR
520.

B.2 Approximating density using speed and throughput

While the induction loops do not record densities, we approximate density at each loop in each
five-minute interval by dividing throughput by speed. Identity (11) specifies an instantaneous re-
lationship between the speed, density, and throughput at each point in space-time. Our density
calculation is an approximation because we are using time-averaged measurements of speed and
throughput. This approximation is very accurate at higher speeds, when vehicles are nearly uni-
formly distributed throughout both space and time, and slightly worse at lower speeds (Hall, 2005).
Figure B.16a shows the underlying speed and throughput data.

To validate our approximation, we compare our estimated densities to observed loop occupancy
rates, which are measured directly by the induction loops. The occupancy rate is the fraction of
time the loop has a vehicle passing over it. In theory, density equals occupancy multiplied by
the average vehicle length. Figure B.16b shows that our estimated density is indeed linear in the
observed occupancy rate. The R2 from regressing observed occupancy on estimated density is
0.975.
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Figure B.15: I-405 Express Lanes map
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Figure B.16: Relationships between loop traffic variables

(a) Throughput vs. speed (b) Density vs. occupancy

Note: Figures show a random sample of 5000 southbound observations, where each observation is a (loop, five-minute
interval, date) from 5–11 AM in 2019. Top-coded speeds have been replaced with estimated freeflow speeds.

B.3 Estimating vehicle MSRPs

We use transaction-level data on vehicle registrations in Washington State, obtained via a public
disclosure request from the Washington State Department of Licensing. For each transaction, we
observe attributes including the date of registration; the make (e.g., Toyota), model (e.g., Prius),
and model year of the vehicle being registered; the home Census tract of the registrant; and the
amount of motor vehicle excise tax (MVET) paid. Our sample contains the universe of over 38
million vehicle registrations in the state from January 2017 to December 2022. Vehicle owners are
required to register their vehicles when they move to the state and to renew their registrations
annually; both types of transactions require MVET payments.

For each Seattle-area registration, we compute the manufacturer-suggested retail price (MSRP)
implied by the amount of MVET paid. The MVET is levied on vehicle registrants living within
the Sound Transit District. This district covers parts of three Seattle-area counties served by the
Central Puget Sound Regional Transit Authority; it contains the I-405 Express Toll Lanes that we
study in this paper. The MVET is a fraction of the vehicle’s depreciated value, which is in turn
computed from the vehicle’s MSRP and a depreciation schedule (Sound Transit, 2023). We use
the 13 million registrations with positive MVETs (i.e., registrations occurring in the Sound Transit
District) beginning in March 2017, when the excise tax rate increased to 1.1 percent. At this stage,
we discard the 0.0025 percent of registrations where the estimated MSRP is more than $500,000;
these observations likely reflect data errors or mistakes made by the registrant. Figure B.17 shows
the distributions of estimated MSRPs for four sample makes.

Finally, we match each I-405 HOT driver’s car to an MSRP estimate, which we use as our
measure of the car price. If possible, we match the car to the median MSRP estimated for vehicles
with the same make, model, and year. If not, we match it to the median MSRP among registered
vehicles with the same make and model. If still not, we use the median MSRP among registered
vehicles with the same make. Among HOT drivers with vehicle information, 73 percent are matched
to the make, model, and year; 7 percent are matched to the make and model only; 2 percent are
matched to the make only; and the remaining 1 percent are unmatched.
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Figure B.17: Estimated MSRPs: vehicles with model year 2015 registered in 2019
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B.4 Market sizes and characteristics

Let r→s denote an ordered pair of Census tracts. We define tract pair r→s as belonging to market
m if one of the top three driving routes from tract r to tract s (according to the OpenStreetMaps
router) involves taking I-405 in market m. Each tract pair belongs to at most one market.

First, we compute the size of each marketm on each date t using the Replica GPS data. Slightly
abusing notation, let qr→s,H,t denote the historical travel flows from tract r to tract s in hour H
on date t. Replica estimates these quantities based on trips taken by a sample of GPS devices. We
compute qmt, the size of market m on date t, by summing over tract pairs in the market and over
hours H ∈ {5, . . . , 10} in the morning peak:

qmt =
∑

(r→s)∈m

∑
H

qr→s,H,t

Figure B.18 illustrates this procedure for m = Lynnwood to Bellevue.
Next, we construct the joint distribution of tract income X and car price Y in each market m.47

Each origin tract r is associated with a unique tract income value xr and a distribution GY
r (y) of

car prices, from registrations in that tract. Let GX,Y
r (x, y) denote the joint distribution of tract

income and car price in tract r. Let ωrm denote the share of total market m travel that originates
in tract r:

ωrm =

∑
s

∑
H

∑
t qr→s,H,t∑

t qmt

The joint distribution FX,Y
m (x, y) of tract income and car price in market m is the weighted average

of that joint distribution in each origin tract:

FX,Y
m (x, y) =

∑
r

ωrmG
X,Y
r (x, y)

47We can’t get this distribution directly from the toll transaction data because that sample includes only drivers
who have taken the toll lanes at least once.
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Figure B.18: Example market size construction: Lynnwood to Bellevue

Note: Each green dot is the centroid of an origin Census tract. Each red dot is the centroid of a destination Census
tract. The figure shows a sample of the tract pairs for which taking I-405 southbound from Lynnwood to Bellevue
(the full length of the tolled section) is one of the top three suggested routes. The black path indicates the part of
the route on I-405.

B.5 On-ramp metering

As discussed in Section 3.2, each on-ramp contains both metered (general-purpose) and unmetered
(carpool-only) lanes, and the metered throughputs reflect rationed demand for I-405 departure
times.48 True demand for 8 AM departures may be higher than observed 8 AM throughput because
non-carpooling drivers must queue in order to exit the off-ramp and enter the highway. This
queueing represents a loss of information from the researcher’s perspective: a single queue exit rate
profile can be rationalized by potentially many queue entry rate profiles.

Figure B.19 shows intraday variation in the distributions of speeds and throughputs in the
metered and unmetered lanes of an example southbound on-ramp. In the unmetered lane, speed
is always constant at (the topcoded value of) 60 miles per hour. Throughput varies smoothly

48The WSDOT website writes of the design and goals of ramp metering: “Ramp meters are a specific type of
traffic signal used to control how quickly vehicles enter traffic flow on a freeway, and are a freeway operation strategy
designed to reduce collisions and decrease travel times. Ramp meters function by controlling the rate (metering) at
which vehicles enter the freeway. . . Ramp meters typically operate during peak congestion times: 6 AM to 9 AM,
and 3 PM to 7 PM. Meters may still be operated outside these hours, as their operation depends on freeway traffic
speeds and volumes, and not on time of day” (Washington State Department of Transportation, 2023).
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Figure B.19: Ramp metering example: southbound SR 522 on-ramp
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Note: Figures show variation in speed and throughput by (unmetered or metered) lane and time of day. In each
five-minute interval, the thick line indicates the across-day median and the shaded area is between the 25th and 75th
percentiles. Each underlying observation is a (loop, five-minute interval, day) from 5 AM to 7 PM (tolled hours) in
2019. This ramp, which takes drivers from eastbound SR 522 to southbound I-405, has an unmetered carpool-only
lane and a metered general-purpose lane.

throughout the day, peaking in the morning between 7–8 AM and largely paralleling the profile
of intraday travel time variation in Figure A.2. In contrast, in the metered lane, speed drops
discontinuously to 10 miles per hour from 6–10 AM. Throughput increases from 5–6 AM, but is
flat from 6–10 AM while metering is in place. Throughput then remains elevated after 10 AM, due
to a combination of queue emptying and true demand for post-10 AM departure times.

Our approach is to reallocate the metered quantities so that they match the profile of unmetered
quantities within each day and ramp. To formalize this, we first define some notation which will
be used in this appendix only. Let H̃ denote the set of five-minute intervals during tolled hours
between 5 AM and 7 PM. Let q̃jhrt denote the raw throughput in lane type (unmetered or metered)
j ∈ {0, 1} at time h on ramp r. We use the raw unmetered quantities q0hrt and impute the metered
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Figure B.20: Raw vs. imputed departure time quantities
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Note: Figures show variation in raw and imputed departure time quantities in each southbound market origin. In
each five-minute interval, the thick line indicates the across-day median and the shaded area is between the 25th and
75th percentiles. Each underlying observation is a (market origin, five-minute interval, day) from 5 AM to 7 PM
(tolled hours) in 2019.

quantities q1hrt as follows:

q0hrt = q̃0hrt

q1hrt =
q̃0hrt∑

h′∈H̃ q̃0h′rt︸ ︷︷ ︸
share of unmetered
departures at time h

on day t

×
∑
h′∈H̃

q̃1h′rt︸ ︷︷ ︸
total metered
departures
on day t

Figure B.20 shows the distributions of raw and imputed quantities in each market origin (summing
across lane types and on-ramps).

This approach amounts to assuming that single-occupancy drivers demand the same distribution
of departure times as carpooling drivers. This assumption is potentially violated if carpooling
drivers, who face reduced-price or free travel in the HOT lanes (depending on whether they have
two or three-plus people in the car), have greater demand for peak-hour travel than single-occupancy
drivers. In this case, we will tend to underestimate the average disutilities of price and travel time
in the population.
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C Descriptives appendix

C.1 Event study: long-run speed and throughput

The HOT lanes opened in September 2015. While our transaction data does not start until 2019,
we can observe speed and throughput of each lane before and after opening. We estimate changes
in average speed and throughput by year relative to HOT opening and (GP or HOV/HOT) route.
We start by averaging loop speeds and throughputs at the (loop, route, hour, year relative to HOT
open) level. The sample is peak hours, southbound 5–11 AM and northbound 1–7 PM, on weekdays
from 2011–2019. We then estimate

yijht ∼ routej × yeart + loopi + hourh (10)

where the two outcomes yijht are speed and throughput. Figure C.21 shows the estimated coef-
ficients on the route-year interactions, where the omitted base level is the GP route in the last
(non-calendar) year before the HOT lanes open.

Figure C.21: Long-run changes in aggregate speed and throughput
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Note: These figures report changes in average speed and throughput by year relative to HOT opening and (GP or
HOV/HOT) route. Each point is an estimated coefficient on a route-year interaction in equation (10), with the level
normalized to the GP speed or throughput in the last year before the HOT lanes opened. The error bars show 95
percent confidence intervals. The sample is peak hours, southbound 5–11 AM and northbound 1–7 PM, on weekdays
from 2011–2019.

Before the HOT lanes open, the GP and then-HOV lanes appear to be moving along different
parts of the backward-bending speed-throughput curve.49 In the GP lanes, speed and throughput
are both decreasing, indicating that these lanes are becoming more and more congested over time.
In contrast, in the HOV lanes, speed is decreasing but throughput is increasing, suggesting instead
that the then-carpool-only lanes are underutilized. HOV speeds average 10 miles per hour faster

49Throughput is low both when speed is very low and when speed is very high (Figure D.25b). Recall that
throughput is the number of vehicles passing over a given point in space per unit of time. When speed is low, then
vehicles take a long time to pass over that point. When speed is high, car-following distances are also high, so that few
cars pass over that point per unit of time. Throughput is maximized at an intermediate speed, the max-throughput
speed. We can think of the road as being overutilized at lower speeds and underutilized at higher speeds.
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than GP speeds during this period.
After the HOT lanes open, speed and throughput increase in the short run and begin to decline

again in the longer run. The short-run increases are due to the expansion of highway capacity along
certain highway segments: a newly constructed HOT lane in September 2015, paired with the in-
troduction of tolling, and a new GP peak-use shoulder lane in April 2017. Estimating equation (10)
separately by road segment, we find that HOT throughput increases on all segments (Figure C.23),
but speed increases are concentrated on the road segments with the new construction (Figure C.22).
Starting about three years after the HOT opening, speed and throughput begin to fall in both lane
types. However, the presence of pricing dampens demand increases, so that speed falls more slowly
than before tolling was introduced.

This analysis has two main limitations, which together motivate the need for our structural
model. First, since the HOT lane opening bundled together several policy changes (detailed at
the end of Section 2), it is challenging to satisfactorily separate the effects of the introduction of
pricing versus the construction of additional HOT lanes. Even analysis at the road segment level
is imperfect, since traffic on a given segment has spillover effects onto traffic on nearby segments.
Second, since the 2015 HOT opening falls outside the 2019 sample period of our toll transaction
data, this long-run analysis cannot speak to heterogeneous effects by driver characteristics. To
overcome these limitations, in Section 5, we introduce an equilibrium model of highway travel,
which we estimate and use to simulate welfare under counterfactual equilibria.
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Figure C.22: Long-run changes in speed by road segment
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Note: These figures report changes in average speed by year relative to HOT opening, (GP or HOV/HOT) route,
and road segment. Each point is an estimated coefficient on a route-year interaction in equation (10), with the level
normalized to the GP speed in the last year before the HOT lanes opened. The error bars show 95 percent confidence
intervals. The pink dashed lines indicate the September 2015 construction of an additional HOT lane on the southern
half of the corridor. The bottom two panels correspond to the segment with new construction. The blue dashed lines
indicate the April 2017 opening of a GP peak-use shoulder lane on a northbound segment in the northern part of the
corridor. The sample is peak hours, southbound 5–11 AM and northbound 1–7 PM, on weekdays from 2011–2019.
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Figure C.23: Long-run changes in throughput by road segment
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Note: These figures report changes in average throughput by year relative to HOT opening, (GP or HOV/HOT)
route, and road segment. Each point is an estimated coefficient on a route-year interaction in equation (10), with
the level normalized to the GP throughput in the last year before the HOT lanes opened. The error bars show 95
percent confidence intervals. The pink dashed lines indicate the September 2015 construction of an additional HOT
lane on the southern half of the corridor. The bottom two panels correspond to the segment with new construction.
The blue dashed lines indicate the April 2017 opening of a GP peak-use shoulder lane on a northbound segment in
the northern part of the corridor. The sample is peak hours, southbound 5–11 AM and northbound 1–7 PM, on
weekdays from 2011–2019.
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D Model appendix

D.1 Utility microfoundation

The microfoundation for the second-stage utility specification (1) comes from Vickrey (1969), which
posits that drivers have four different flow values of time. Figure D.24 illustrates these flow values,
which depend both on where the driver is—at her origin, on the road, or at her destination—and
on the time of day. Regardless of the time of day, driver i derives value uorigi per hour spent at her
origin and uroadi per hour spent on the road. However, her value per hour spent at her destination
depends on whether that time is spent before or after ideal arrival time ηi: she gets udesti per hour
before ηi and u

dest
i per hour after ηi.

The utility formulation in equation (1) follows from setting:

αD
i = uroadi − uorigi

αE
i = udesti − uorigi

αL
i = uorigi − udesti

D.2 Speed, density, and throughput

In Section 5.2, we refer to the speed-density relationship as “the” road technology, but in fact, the
road technology can be specified as a relationship between any pair of the three variables: speed,
density, and throughput. This is because throughput, the number of cars crossing a point in space
per unit of time, is identically the product of speed and density, which can be seen in the variables’
units of measure:

(throughput in cars/lane/hour) = (speed in miles/hour)× (density in cars/lane/mile) (11)

Thus, given a speed-density relationship, the relationships between the remaining pairs are deter-
mined by identity (11).

Figure D.25 illustrates two versions of the road technology which are common in the transporta-
tion literature. The speed-density curve (panel a) is monotone, with speed decreasing in density.
The speed-throughput curve (panel b) is backward-bending. Start at the top left of the curve,
where high speed (and low density, by panel a) is associated with low throughput. As speed de-
creases, throughput first increases due to increasing density. At some point, however, lower speeds
reduce throughput, a phenomenon sometimes referred to as hypercongestion (Hall, 2018; Anderson
and Davis, 2020). Both the speed-density and speed-throughput relationships are estimated in the
empirical transportation literature, reviewed by Hall (2005).

E Estimation appendix

E.1 Estimating driver beliefs

In each market m, drivers have common beliefs about the joint distribution of prices and travel
times on each day t. Let (pmt,dmt) = (pjhmt, djhmt)j∈{0,1},h∈H denote the (3 |H|)-dimensional
vector of prices and travel times in all routes j and all departure times h. This appendix describes
how we parameterize and estimate the joint distribution Gmt (pmt,dmt).

We estimate a truncated joint normal distribution for each market m. The mean and variance-
covariance matrix depend on the quarter (i.e., the season), day of week, and presence of absence of
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Figure D.24: Utility microfoundation
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Figure D.25: Road technology relationships
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precipitation on day t. Estimation proceeds in three steps:

1. Obtain the mean vector by regressing

yjhmt ∼ departureTimeh × dayOfWeekt × quartert + departureTimeh × precipt (12)

On the left-hand side, yjhmt is the unrounded price or the travel time. On the right-hand
side, precipt is an indicator for positive precipitation at the Everett weather station (about
11 miles north of I-405’s northern terminus) between 5–11 AM on day t. Figure E.26 shows
the estimated means on days without morning precipitation (i.e., the coefficients on the first
right-hand side term).

2. Separately for days with and without precipitation, estimate the joint variance-covariance
matrix for (pmt,dmt) using the sample variance-covariance of the residuals of equation (12).
Each variance-covariance matrix has dimension 3 |H| × 3 |H|; Figure E.27 plots the |H| ×
|H|-dimensional submatrices corresponding to the variance-covariance matrices of GP travel
times, HOT travel times, and prices.

3. Truncate prices at the $0.75 floor and $10 ceiling. Truncate travel times from below at the
minimum observed travel time in that market (across all departure times and dates).

E.2 Demand moment conditions

In this appendix, we describe the full set of moment conditions used to jointly estimate the two
stages of the demand model. Each set of moment conditions is presented under the heading of
the demand parameters about which they are most informative. Throughout this appendix, the
subscripts underneath an expectation symbol indicate the dimensions over which the expectation
is being taken.

E.2.1 Stage 1 moment conditions

Let ξ̂hat(θ) denote the demand shocks in market origin a at time h on date t that rationalize the
observed departure time shares conditional on the candidate parameters θ. Recall that we can only
recover demand shocks at the market origin—not market—level because we only observe departure
time quantities at the market origin level, from highway on-ramp throughputs.

Furthermore, let ξ̃hat(θ) denote the same demand shock after residualizing with respect to date t
fixed effects. These date-demeaned demand shocks affect only substitution across departure times,
not substitution toward the non-405 outside option.
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Figure E.26: Driver beliefs: mean travel times and prices without precipitation
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Note: Figure plots estimated coefficients on the (departure time, day of week, quarter) interactions in equation (12).

Inside good intercepts The demand shocks have mean zero in each market origin a:

∀a : Eht

[
ξ̂hat(θ)

]
= 0

These moment conditions are informative about the inside good intercepts β0a, which control sub-
stitution to the non-405 outside option.

Ideal arrival time distribution After demeaning by date, the demand shocks have mean zero
in each hour H:

∀H : Ehmt

[
ξ̃hmt(θ) | hour(h) = H

]
= 0

These moment conditions are informative about the standard deviation ση of ideal arrival times.
They impose that systematic differences in departure time shares across hours must be due to the
distribution of drivers’ ideal arrival times, rather than rationalized solely by demand shocks.

Time early and time late coefficients After demeaning by date, the demand shocks are
independent of morning precipitation indicators in each hour H:

∀H : Ehmt

[
ξ̃hmt(θ)× precipt | hour(h) = H

]
= 0
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Figure E.27: Driver beliefs: variance-covariance matrices of travel times and prices

(a) GP travel time
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Note: Figures show estimated variance-covariance matrices of the residuals of GP travel times (panel a), HOT travel
times (panel b), and prices (panel c) from equation (12).
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As discussed in Section 6.1.2, precipitation increases the variance of prices and travel times. If
drivers find it very costly to be late to their destinations, they will “buy more insurance” on rainy
days by shifting their departure times earlier in the day. These moment conditions impose that
there are no systematic differences in unobserved demand for different departure times on rainy
versus sunny days. However, since we use the date-demeaned demand shocks here, we allow for the
possibility that unobserved demand for the outside option is systematically different on rainy days.

E.2.2 Stage 2 moment conditions

In the second stage, we observe HOT (j = 1) but not GP (j = 0) route quantities. Since we can’t
construct route market shares, we instead match moments of HOT route quantities.

HOT intercepts We match mean HOT quantities in each market. Let q1hmt and q̂1hmt(θ) denote
the observed and model-predicted HOT quantities, respectively, in departure time h in market m
on date t. These moment conditions take the form:

∀m : Eht [q1hmt − q̂1hmt(θ)] = 0

They are informative about the market-specific HOT intercepts α0
1m.

Mean price and travel time coefficients We match reduced-form coefficients of HOT quantity
on the second-stage price and travel time shifters from Section 6.1.2. First, we match the coefficient
on the rounded-up indicator in the price rounding regression discontinuity.50 Second, we match the
coefficients on the GP and HOT crash indicators in column 3 of Table A.3. For each coefficient
φ estimated from the data, let φ̂(θ) denote the analogous coefficient estimated from the model-
predicted HOT quantities. These moment conditions impose that [φ− φ̂(θ)] /φ = 0 for each φ.
They are informative about the mean price coefficient αP and the mean travel time coefficient αD.

Heterogeneity by income We match covariances of HOT driver characteristics xim with at-
tributes of HOT trips taken (price paid and time saved) conditional on the hour and market:

Covihmt (xim, p1hmt | qi1hmt > 0,hour(h),m)

Covihmt (xim, d0hmt − d1hmt | qi1hmt > 0,hour(h),m)

The data covariances are computed from the toll transaction data, using drivers whom we observe
choosing the HOT route at time h on day t. To compute the model covariances, we weight by
drivers’ predicted probabilities of choosing the HOT route. Matching these moments is informative
about the parameters µα,P and µα,D specifying how preferences for price and travel time vary with
driver characteristics.

50Specifically, we regress the number of HOT trips on the distance to the price rounding threshold (the running
variable), the rounded-up indicator, and (trip definition, hour) fixed effects.
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Unobserved heterogeneity We match variances and covariances of the same attributes of HOT
trips taken (price paid and time saved) conditional on the hour and market:

Varihmt ( p1hmt | qi1hmt > 0,hour(h),m)

Varihmt (d0hmt − d1hmt | qi1hmt > 0,hour(h),m)

Covihmt (p1hmt, d0hmt − d1hmt | qi1hmt > 0,hour(h),m)

Matching these moments is informative about the variance-covariance matrix Σα,PD of the unob-
served component of drivers’ preferences for price and travel time.
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