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Abstract

Revealed preference arguments are commonly used when identifying models of both
single-agent decisions and non-cooperative games. We develop general identification
results for a large class of models that have a linearly separable payoff structure. Our
model allows for both discrete and continuous choice sets. It incorporates widely studied
models such as discrete and hedonic choice models, auctions, school choice mechanisms,
oligopoly pricing and trading games. We characterize the identified set and show that
point identification can be achieved either if the choice set is sufficiently rich or if a
variable that shifts preferences is available. Our identification results also suggests
an estimation approach. Finally, we implement this approach to estimate values in a
combinatorial procurement auction for school lunches in Chile.
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1 Introduction

Revealed preference arguments are central to estimating the distribution of agents’ payoffs.
These arguments yield restrictions on preferences or payoffs based on an observed action (or
choice). The typical argument assumes optimal behavior to derive implications of the require-
ment that any alternative action that an agent could have taken must yield a lower payoff.
The consequences of the chosen and alternative action – in terms of realized allocations – are
then used to identify or bound the payoffs from various allocations.

Such arguments have been applied to study a seemingly disparate set of models. The most
immediate application is to consumer choice (e.g., McFadden, 1973; Rosen, 1974).1 However,
arguments that are similar in spirit have been applied for other single-agent choice settings
and a class of non-cooperative games. Single-agent examples include hedonic demand models
(e.g., Rosen, 1974; Bajari and Benkard, 2005) and monopoly pricing. Examples of non-
cooperative games include games with incomplete information such as auctions (Guerre et
al., 2000), school choice (Agarwal and Somaini, 2018), and trading or bargaining games
(Larsen and Zhang, 2018); and games with full information such as oligopoly price setting
where the objective is to identify marginal costs (Berry et al., 1995; Berry and Haile, 2014).
A common question is whether (the distribution of) agents’ payoff types is identified from
the available data.

Our starting point is the observation that several models in the literature share a common
structure. An agent can take an action a ∈ A. The consequence of the action is described
by an expected outcome x ∈ X ⊆ RJ and an expected transfer t ∈ R. Payoffs take a linear
form and the agent maximizes

V (a; v) = v · xA (a) − tA (a) ,

where v ∈ RJ is the agent’s preference type, and xA (·) and tA (·) are functions that map
actions to outcomes and transfers respectively. We assume that the analyst knows (or can
identify) xA (a) and tA (a) and observes each agent’s choices. An important requirement for
conducting counterfactual analysis is that the cumulative distribution function (CDF) of the
random variable v given observables z, denoted with FV |Z(v; z), is identified. In addition to
this distribution, some cases also yield identification of the payoff type for each agent in the

1We abstract away from the endogeneity of prices which is the focus of an important literature on iden-
tifying market demand (Berry et al., 1995; Berry and Haile, 2014). We focus on cases where endogeneity
can be perfectly controlled for by other means or where consumer-level price variation that is orthogonal to
preferences is available (e.g. Tebaldi et al., 2019).
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market.

This paper studies the identification of models with this linearly separable structure. Our
framework and results allow for both discrete and continous choice sets X or a mixture of
the two, and can incorporate both single-agent decision settings as well as a large class of
non-cooperative games with independent private information. As we formally demonstrate in
section 3, the hedonic demand model of Rosen (1974) and Bajari and Benkard (2005) maps
to the model above if a is the good chosen, xA (a) denotes the characteristics of the good, v
denotes the vector of consumer preferences for the characteristics and tA (a) denotes the pric-
ing function. In the class of incomplete information non-cooperative games with independent
and private types, xA (a) and tA (a) are expected outcomes and transfers, integrating over
the strategies of other agents. For example, in the first-price auction studied in Guerre et al.
(2000), a denotes the bid, xA (a) denotes the probability of winning and tA (a) denotes the
expected payment. Similarly, in the model of Lewbel and Tang (2015), a ∈ {0, 1} denotes a
binary, xA is the identity function, and tA(a) = a× z where z is a special regressor.

The main results characterize the identified set of distributions FV |Z(v|z) and derives con-
ditions under which it is point identified. Point identification can be achieved in two cases.
The base case is if the choice set is X is sufficiently “rich” so that each choice is optimal
only for a unique payoff type. This result implies identification in the hedonic price model
as well as the first-price independent private value auctions. It also implies identification of
marginal costs in oligopoly models if the demand function is known.

In the complementary case, where each choice is optimal for a set of payoff types, we show
conditions under which variation in the observable z can be used to “trace out” the distri-
bution of v. In this case, we require that z acts as a payoff shifter as in Lewbel (2000),
although we can allow for a more general non-linear form by applying arguments similar to
those in Allen and Rehbeck (2017). Our results imply identification in discrete choice models,
bargaining models with discrete offers (Larsen and Zhang, 2018), and school choice models
with or without strategic manipulation (Agarwal and Somaini, 2018).

These results therefore unify the analysis of identification in a large class of models, which
have thus far been obtained using arguments customized for each model. While we do not
aim to extend the analysis of identification in these models, we hope that the relatively
sparse structure required for our results will be useful for new models. For instance, our
model allows for a combination of discrete and continuous choices, which might be useful
in some contexts – e.g., Aspelund and Russo (2023), which analyzes a scoring auction with
multi-dimensional bids that include discrete and continuous components. We hope that our
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general results and this shared structure will yield more immediate results for other models
where identification results do not currently exist.

Our characterization of the identified set also suggests an estimation approach that is portable
across contexts. In a first step, an analyst can use the revealed preference restrictions that
we derive to bound the payoff type of each agent in the dataset based on the agent’s action.
These restrictions yield a convex set to which the agent’s payoff type belongs. The second step
then estimates the distribution of payoffs using an estimator of choice and further restrictions
(if any).

As an illustrative application, we empirically analyze the procurement for public school
lunches in Chile that is based on a combinatorial auction. This auction was analyzed in
Kim et al. (2014), henceforth KOW. Our study uses the same dataset. It is well-known that
the extreme high dimensionality of the choice set in a combinatorial auction presents several
technical challenges. We show how our reformulation of the problem suggests an alternative
solution to this dimensionality problem than the one taken in KOW.

Related Literature

A large literature that is not easily summarized applies revealed preference arguments to show
identification of various models. We point the reader to several surveys for identification
results pertaining to these models; for example, see Berry and Haile (2016) for demand
models; Athey and Haile (2007) for auction models; and Agarwal and Somaini (2020) for
school choice.

Our paper shares its focus on general revealed preference arguments with Pakes (2010),
which also starts with revealed preference inequalities. The models and approaches are non-
nested – Pakes (2010) allows for expectational errors in agents’ beliefs but places stronger
functional form restrictions on the estimand, which is the expectation of v and z. We study
the identification of the conditional distribution given by FV |Z . In this sense, our estimand is
similar to that in Ciliberto and Tamer (2009), although we pursue a non-parametric approach
and consider conditions for obtaining point identification.

The illustrative application that we study is related to a small but growing literature on the
analysis of combinatorial auctions. Papers that use bid data to estimate complementarities
or substitutabilities between multiple objects that are auctioned off simultaneously include
Cantillon and Pesendorfer (2007), Gentry et al. (2014) and Xiao and Yuan (2020).

Overview

Section 2 describes the notation of our model for single-agent problems and non-cooperative
games, and maps the leading examples to our notation. Section 4 presents the main results
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on identification and applies it to the examples. Section 5 presents the application to com-
binatorial auctions. Section 6 concludes. Proofs and lemmas not contained in the main text
are in the Appendix.

2 Model

2.1 Notation and Agent Decisions

Consider an agent indexed by i who picks an action a from a set A.2 Let xA : A → RJ and
tA : A → R be the functions mapping actions to outcomes and transfers respectively. Each
action results in an outcome described by x ∈ X =

{
x ∈ RJ : x = xA (a) a ∈ A

}
and an

(expected) payment t ∈ R. We do not restrict the cardinality of X or of A. By assuming
that all agents face the same choice sets, our analysis effectively conditions on the value of
(xA, tA) faced by an agent.

Agent i’s preference type is denoted vi ∈ RJ . Her (expected) utility from choosing a ∈ A is
given by the linear form

vi · xA (a) − tA (a) .

We assume that each agent chooses a ∈ A to maximize this indirect utility.3

Optimality implies that an agent with preference type v picks action a only if for all a′ ∈ A,

v · xA (a) − tA (a) ≥ v · xA (a′) − tA (a′) .

Thus, if a and a′ are such that xA (a) = xA (a′) and tA (a) < tA (a′), then no agent picks a′.
Define tX (x) to be cost of choosing the outcome x ∈ X :

tX (x) = inf {tA (a) , a ∈ A : xA (a) = x} ,

where the infimum of an empty set is defined to be infinity. Observe that is it dominated to
choose an action a ∈ A if (xA (a) , tA (a)) is not in the graph of tX (x).

We introduce two definitions that will be useful in the analysis. First, define the convex
hull t (·) = conv tX (·) of the function tX (·) to be the greatest convex function majorized by

2Agents are allowed to randomize between actions in the set A. However, eventually the randomization
results in a single action a ∈ A.

3This formulation embeds scale and location normalizations because the expected utility is equal to −tA (a)
if xA (a) = 0.
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the function (Rockafellar, 1970, page 36):

t (x) ≡ inf {t |(x, t) ∈ conv epi tX (·)} ,

where conv epi t (·) is the convex hull of the epi-graph of t (·).4 By definition, the convex hull
of a function on X is a convex function with domain X̄ given by the convex hull of X .

Second, define the subdifferential ∂t (x) of a convex function t : X̄ → R evaluated at x to
be the set of all subgradients v ∈ RJ such that for all x′ ∈ X̄ , t (x′) ≥ t (x)+v ·(x′ − x). The
subdifferential of a convex function is a non-empty convex set at every point in the interior of
its domain. Further, if t is differentiable at x, then the subdifferential is a singleton containing
only the gradient of t evaluated at x, ∇t (x).

Figure 1 illustrates the function tX (·), its convex hull t (·), and subgradients of t (·) at cer-
tain points. The horizontal axis denotes the potentially high-dimensional outcome space
X . The solid curve represents tX (·) and the dashed curve represents the parts where t(·)
differs from tX (·). Specific pairs of x and t are labeled A through F , with co-ordinates
(xA, tA) , . . . , (xF , tF ). The graph of tX (·) contains all the points achievable by some action
in A. Thus, this graph contains A, B,C,E and F , but not the hollow points. The graph of
t (·) does not contain the dominated point B but contains D and all points in the segment
D−E which can be achieved, in expectation, by randomizing between C and E, but not by
choosing any particular action in A. The function t (·) can exhibit upward discontinuities. As
x approaches xF , t (x) approaches the hollow point below F . However, at xF , t (xF ) jumps
upwards to point F .

Since tX (·) and t (·) are differentiable at xA, the only element of the subdifferential is the
slope of the dotted line through A. In contrast, these functions are not differentiable at C.
The subdifferentials of t (·) consists of the slopes of all lines that are everywhere below the
dashed and solid lines. The only element of the subdifferential of t (·) of D and E is the slope
of the line through the points C − E.

2.2 Non-Cooperative Games

Although we began with the single-agent case, our framework also allows analysis of games
that satisfy the following structure on payoffs and information. Let a−i and v−i respectively
denote the actions and values of agents other than i. Let x̃i (ai, a−i) be the outcome and
t̃i (ai, a−i) be the transfer for agent i as a function of the action profile (ai, a−i). If the outcome

4The epi-graph of a function f is the set of points (x, y) such that y ≥ f (x).



7

Figure 1: Outcomes, Convex Hulls and Subgradients

Notes: The solid curve is the graph of tX (x) and the dashed curve is the graph of t (x) for points where t (x) < tX (x). The
points labeled A through F represent outcomes. When an outcome is represented by a solid circle, it belongs to the graph of
tX (x) and results from an action a ∈ A. An outcome represented by a hollow circle does not belong to the graph of tX (x).
Such points do not yield from an action a ∈ A.

is random conditional on the action profile, then interpret x̃i (ai, a−i) and t̃i (ai, a−i) be the
corresponding expected values.

Assume that agent i’s payoff playing ai when the other agents play a−i is given by

vi · x̃i (ai, a−i) − t̃i (ai, a−i) .

Let Ji denote agent i’s information set, with vi ∈ Ji. The expected utility from playing ai is
given by

vi · E [ x̃i (ai, a−i)| ai; Ji] − E
[
t̃i (ai, a−i)

∣∣∣ ai; Ji

]
,

where expectations are taken with respect to the distribution of actions a−i of the other
players given the information set Ji. Uncertainty in this model can arise either because i
expects its opponents to play a mixed strategy, because the types v−i are private information
from the perspective of agent i, or both.

This model fits our framework if each agent is best responding to the distribution of actions
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played by others. Specifically, set

xA (ai; Ji) = E [ x̃i (ai, a−i)| ai; Ji]

tA (ai; Ji) = E
[
t̃i (ai, a−i)

∣∣∣ ai; Ji

]
.

When analyzing games, we will assume that the two functions above are known to the analyst.
A sufficient condition is that the outcome and the distribution of actions a−i that agent i
expects, a−i|Ji, is known or can be identified.

For example, consider the case in which agents’ types are private information, each drawn
independently from a distribution with CDF FV . In this case, if the strategy profile σ∗ (v)
constitutes a Bayesian Nash Equilibrium, then

xA (ai) =
∫
x̃i

(
ai, σ

∗
−i (v−i)

)
dFV−i

(1)

tA (ai) =
∫
t̃i
(
ai, σ

∗
−i (v−i)

)
dFV−i

, (2)

where the conditioning on the information set is dropped because it is irrelevant. Since play is
described by a Bayesian Nash Equilibrium, agents have correct beliefs about the distribution
of a−i. The distribution of a−i that each agent expects is identified from observation of the
actions of all agents in independent and identically distributed instances of the game.

2.3 Regularity

We will make the following assumption to ensure that the optimization problem faced by
each agent and their resulting choices are well-behaved:

Assumption 1. (i) The function tX : X → R is lower semi-continuous.

(ii) The set X is non-empty and compact.

(iii) The random variable X = X∗ (V, ω) ∈ X , where X∗ (·, ·) is measurable with respect to
V and ω ∈ Ω and for all ω ∈ Ω

X∗ (v, ω) ∈ arg max
x∈X

v · x− tX (x) .

Parts (i) and (ii) above imply, by the extreme value theorem, that the solution to the problem
maxx∈X v · x − tX (x) for each v ∈ RJ is attained for some element of X . Part (i) rules out
upward discontinuities in tX (x) as in the hollow point below F in Figure 1 and part (ii)
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rules out the hollow point D. Compactness of X is either commonly satisfied or a weak
restriction in the models discussed in section 3 below. For instance, in first-price auctions, X
is the unit interval; in the hedonic demand models, it restricts the characteristic space to be
compact. Part (iii) assumes optimal behavior as well as a weak technical condition regarding
the measurability of the map from types to outcomes. We allow for a randomization device ω
for cases where there are there are multiple elements in X that attain the maximum. We do
not impose any restrictions on the joint distribution of ω across agents. 5 Specifically, when
arg maxx∈X v · x − tX (x) is a set, then the agent is indifferent between multiple outcomes
x ∈ X and part (iii) requires that the random variable X is generated from a measurable
selector.

Under Assumption 1, t (·) is a lower semi-continuous proper convex function supported over a
non-empty convex and compact set X̄ . The conjugate function t∗ (v) = maxx∈X v ·x− tX (x)
is also a lower semi-continuous proper convex function because the conjugate is the pointwise
supremum over a family of affine functions with domain RJ . Let V† ⊆ RJ be the open set
of points where t∗ (v) is differentiable. The set V† is dense in RJ and its complement is a set
of measure zero Rockafellar (1970, Theorem 25.5). We define X † ⊆ X̄ as the collection of
gradients of t∗ over V†. More formally, X † =

{
x ∈ X̄ : x ∈ ∂t∗ (v) , v ∈ V†

}
. If v ∈ V†, then

x ∈ ∂t∗ (v) is the unique solution to the problem maxx∈X̄ v
′x − t (x). Moreover, if x ∈ X †,

then there exist v ∈ V† such that vx − t (x) > vx′ − t (x′) for all x′ ̸= x. Thus, V† is the
set of value with a strictly preferred outcome and X †is the set of outcomes that are strictly
preferred by some v ∈ V†.

2.4 Observables

We follow the convention that upper-case letters denote random variables while lower case
letters indicate specific values of the corresponding random variable.

Consider a dataset in which the analyst has access to a large sample of observations indexed
by i from conditionally independent choices given a set of covariates Z. The analyst observes
Z and the chosen outcome X = X∗ (V ).

In addition, we assume that the analyst knows or observes the feasible outcomes X and the
function tX (·). Therefore, we assume that X and tX (·) are either identified from the data
or known from institutional details.

5Theorem 18.19 in Aliprantis and Border (2006) implies that a measurable selector satisfying part (iii)
exists if X is compact and tX (·) is continuous. This is the case because the maximand is a Caratheodory
function: it is the difference between a bilinear function and a continuous function tX (·) of the argument x.
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As discussed above, these outcomes and payoffs are generated by choosing actions a ∈ A
with corresponding outcomes and transfers. Therefore, an alternative to observing Xi and
having knowledge of tX (·) is that the actions Ai are observed and the functions xA (·) and
tA (·) are known. The rest of the analysis treats X and tX (·) as observable although all of
our conclusions carry over to the alternative case by setting X = xA (A). In sum, we consider
that the distribution of X conditional on Z is identified directly from the observed data.

We can also allow for X and the function tX (x) to vary as long as the sample includes
many observations for a given pair (X , tX (·)) . We omit variation in this object for notational
simplicity because our analysis will be conditional on a fixed value.

In what follows, the conditioning on specific values of Z will be dropped from the nota-
tion except when we explictly put together choices of agents with different values of the
observables.

2.5 Identification

We follow the standard definitions of identification and falsifiability in the literature (e.g.,
Athey and Haile, 2002; Matzkin, 2007). That is, a model is identified if the joint distribution
of the model’s primitives is uniquely determined by the joint distribution of observables. In
our case, a model (F,S) is defined by a collection F of joint distributions of V and Z, FV,Z ,
and a collection S of maps ϕ : F → H, where H is the set of all joint distributions of X and
Z, FX,Z . We assume that the model is correctly specified. That is, the true value of (FV,Z , ϕ)
that generates the data belongs to (F,S).

Our analysis will focus on identifying various features of the model, such as the joint distri-
bution FV,Z :

Definition 1. A feature ψ : (F,S) → Ω is identified given the model (F,S) if and only if for
any two pairs (FV,Z , ϕ) and

(
F̃V,Z , ϕ̃

)
in (F,S), ϕ (FV,Z) = ϕ̃

(
F̃V,Z

)
implies that ψ (FV,Z , ϕ) =

ψ
(
F̃V,Z , ϕ̃

)
.

In addition to identification, some of our results will analyze whether the implications of a
model are refutable:

Definition 2. A model (F,S) is falsifiable if and only if ⋃ϕ∈S,FV,Z∈F ϕ (FV,Z) ⊊ H.

Just as identification of a model in necessary but not sufficient for the existence of a consistent
estimator, falsifiability is necessary but not sufficient for the existence of a valid statistical



11

test (Berry and Haile, 2018). Both estimation and inference require additional statistical
analysis. We leave such analyses for future research.

3 Examples

3.1 Single-Agent Problems

Example 1. Hedonic Demand Models. Consider the hedonic demand model in which
consumer i’s indirect utility from purchasing good k ∈ {1, . . . , K} is given by

∑
j

xkjβij − p (xk) ,

where p (·) is the pricing function, xkj denotes the j−th characteristic of product k, and βij

denotes the random co-efficients. This model fits our framework with vi = (βi1, . . . , βiJ) and
t (·) = p (·).

This model is the hedonic demand model proposed in Gorman (1980) and Lancaster (1966)
with the additional restriction that preferences are linear in characteristics and prices. Rosen
(1974) proposed estimating such models by first estimating p (·) and then using data on
purchases to recover the marginal willingness to pay for xkj, βij, between xkj. Bajari and
Benkard (2005) incorporate price endogeneity into this framework by including an unobserved
quality index ξk ∈ R into xk and show how to identify the pricing function and the unobserved
quality of each good in a first step. Our analysis takes this first step as given and applies to
the identification of the marginal willingness to pay.

Example 2. Multinomial Choice with Exogenous Characteristics. Consider a dis-
crete choice model (see McFadden, 1973; Train, 2009). An outcome x ∈ X =

{
x ∈ {0, 1}J : ∑j xj ≤ 1

}
denotes which option is chosen by a consumer. Let t (x) denote the price of option x and let
vi denote the vector of utilities for the other attributes. The consumer’s utility from picking
any given x ∈ X is given by the form assumed in our model:

vi · x− t (x) .

A large literature (e.g., Berry et al., 1995) focuses on solving the price endogeneity problem.
This problem is particularly relevant for the consumer choice context when certain product
attributes are unobserved. We do not address endogeneity of this form in our analysis,
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assuming that the researcher is able to find a solution in a prior step or it is reasonable that
endogeneity is not a concern. Thus, our results are relevant to choices in which unobserved
product attributes can be controlled for by other means or if there is consumer-level price
variation within the market (e.g., Tebaldi et al., 2019).

3.2 Mechanisms and Trading Games

Example 3. Single Unit, Independent Private Value (IPV) Auctions. Our model
embeds standard IPV auctions that award the object to the highest bidder. In our notation,
the action a ∈ R corresponds to a bid, vi is agent i’s value for the object, xA (a) ∈ [0, 1]
denotes the probability of winning with a bid a, and tA (a) denotes the expected payment.
We can accommodate both first-price and all-pay auctions, amongst others. For example,
in the first-price auction analyzed by Guerre et al. (2000), each agent chooses a bid a to
maximize (v − a)H (a), where H (a) is the cumulative distribution function of the highest
bid of the remaining bidders. In a Bayesian Nash Equilibrium, bidders have consistent beliefs
about the bid distribution of opposing bidders and data from many independent and identical
auctions identifies H (a). The bid a parametrizes xA (a) = H (a) and tA (a) = aH (a).

We assume that all bids are observed. The identification of these auctions under weaker
assumptions and fewer data requirements has been analyzed in Athey and Haile (2002).

Example 4. Mechanisms with Private Information, Independent Types, and Quasi-
linear Utilities. Our model can incoporate mechanisms more general than single-unit IPV
auctions. Consider a mechanism described by the allocation rule x̃i (ai, a−i) and transfer
function t̃i (ai, a−i), where the set of actions A coincides with the set of messages an agent
can send. In incentive-compatible direct mechanisms. agents will truthfully reveal their
types and the distribution of a−i will coincide with the distribution of valuations. In indi-
rect mechanisms, revealed preference arguments link valuations and messages. Moreover, the
resulting allocation may involve ironing or pooling types. Pooling is particularly important
if the space of messages is discrete, for example if there are minimum bid increments. An
example with discrete messages includes scoring auctions in which bids may include binary
services in addition to a continuous monetary amount (see Aspelund and Russo, 2023, for
example). Our approach will allow for both cases.

Example 5. Oligopoly Pricing. The identification of marginal costs in canonical models
(e.g., Berry et al., 1995) is based on first identifying demand using cost shifters (see Berry and
Haile, 2014), then assuming a Nash Equilibrium in simultaneous move price setting game. To
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map this exercise to our notation, let ai be the price chosen by firm i, vi be the negative of the
firm’s marginal cost, x̃ (ai, a−i) be the quantity sold by firm i, and t̃ (ai, a−i) be the negative
of the firm’s revenue. Therefore, xA (ai; Ji) and tA (ai; Ji) are the expected quantities and
the negative of expected revenues, respectively. Profit maximization implies that the firm
maximizes

vi · xA (ai; Ji) − tA (ai; Ji) .

We can allow for information sets that may or may not include the prices set by other firms
by varying Ji.

Instead of a price setting game, it is also straightforward to fit a quantity setting game into
our model by interpreting a as quantities and setting xi (ai; Ji) = ai. The function ti (ai; Ji)
still denotes the expected negative revenue.

Example 6. School Choice. Agarwal and Somaini (2018) consider a school assignment
mechanism in which agents can submit rank order lists indexed by a.6 Assume that pref-
erences are private information and each student knows the distribution from which the
preferences of other students are drawn. In equilibrium, a student submitting the list a is
assigned to one of J schools with probability vector xA (a) ∈ ∆J ⊆ RJ , where xA (a) is
derived as in section 2.2. Let di = (di1, . . . , diJ) be the vector of distances of each school
from student i, and let ui denote the vector of indirect utilities from assignment into each
school, net of distance. If preferences are linear in distance, then the expected utility from
submitting list a is given by

(ui − di) · xA (a) .

This model fits our framework by setting tA (a; Ji) = 0 and vi = ui − di.

Example 7. Trading Games. Larsen and Zhang (2018) consider a trading game in which
an agent can take a sequence of actions a = (a1, . . . , aM). Following this sequence, the agent
has a probability xA (a) ∈ [0, 1] of engaging in a transaction and paying an expected (possibly
negative) transfer tA (a). The value of the trade for agent i is given by vi ∈ [vi, v̄i] ⊆ R.
Therefore, the expected utility from the action a sequence is

vi · xA (a) − tA (a) ,

where the actions of other agents are integrated over as in section 2.2. This trading game is
a one-dimensional special case of our model.

6We fix the priority type of the student and drop it from the notation for simplicity.
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4 Revealed Preferences

4.1 Rationalizable Actions

Our first result derives a testable implication of the model and characterizes the consequences
x that are optimal for some v ∈ RJ .

Proposition 1. (i) The outcome x ∈ X is optimal for type v ∈ RJ if and only if tX (x) = t (x)
and v ∈ ∂t (x). (ii) If tX (·) is convex and lower-semicontinuous, then for every x ∈ X there
exists v ∈ RJ such that x is an optimal choice.

Proof. Part (i). If: Let v ∈ ∂t (x) and tX (x) = t (x). Since v ∈ ∂t (x), for all x′ in the convex
hull of X , v · (x′ − x) ≤ t (x′) − t (x) . Observe that tX (x) = t (x) and t (x′) ≤ tX (x′) for all
x′ ∈ X . Therefore, we have that v · (x′ − x) ≤ tX (x′) − tX (x) as required.

Only if: Suppose that x ∈ X is optimal for v. Towards a contradiction suppose that t (x) <
tX (x). Since t (·) is the convex hull of tX (·), there exist xj ∈ X and weights αj ≥ 0 such
that ∑αj = 1, ∑j αjxj = x and ∑j αjtX (xj) = t (x) . Therefore,

v · x− tX (x) <
∑

j

αj (v · xj − tX (xj)) .

Hence, it must be that there exists xj such that v · x − tX (x) < v · xj − tX (xj). This
contradicts the assumption that x is optimal. Thus, tX (x) ≥ t (x), and by definition of t (·),
t (x) ≤ tX (x). Therefore, tX (x) = t (x).

To show that v ∈ ∂t (x), assume towards another contradiction that v /∈ ∂t (x). That is,
assume there exists x′ in the convex hull of X such that v ·x−t (x) < v ·x′−t (x′). Hence, there
exist xj ∈ X and weights αj ≥ 0 such that∑αj = 1 and∑j αj (v · xj − tX (xj)) = v·x′−t (x′).
Since tX (x) = t (x), it must be that there exists xj such that v · x− tX (x) < v · xj − tX (xj).
This contradicts the assumption that x is optimal.

Part (ii). Under the maintained assumptions, tX (x) = t (x) for all x ∈ X and ∂tX (x) =
∂t (x). Moreover, t (x) is continuous, implying that ∂t (x) is non-empty. Part (i) implies the
result.

Part (i) shows that linearity of payoffs in the model has testable implications. Specifically,
outcomes x that result in payments larger than t (x) are dominated. Figure 1 presents an
illustration. Consider the point A and an agent with type vA given by the slope of the tangent
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through A. Lines parallel to this tangent are the indifference curves for an agent with type
vA, with utility increasing as t decreases. Therefore, the unique optimizer for this agent is
xA. In contrast, points in the neighborhood of xB are not an optimal choice. An agent would
rather pick either xC or an outcome close to xA. The outcome xC is also optimal, but for
more than one type. The slopes of the two dotted lines touching C, and convex combinations
of them, are the types for which C is optimal.

That said, part (ii) shows that if the cost function tX (·) is convex and smooth, then essentially
any choice can be rationalized. Convexity implies that tX (x) = t (x) for all x ∈ X , ruling
out points like B in Figure 1. Lower semi-continuity rules out points like D and F in the
graph of tX (·), illustrated in Figure 1. The outcome xD ̸∈ X and therefore it does not belong
to the domain of tX (·) although it belongs to the domain of t (·). The outcome xF is not
optimal for any type because an agent can achieve an arbitrarily close outcome to xF while
discretely reducing the payment. Proposition 1 implies that xF is not optimal because ∂t (x)
is not well-defined at this point. Together, convexity and lower semi-continuity imply that
all solutions to the problem maxx∈X v · x− tX (x) also solve the problem maxx∈X̄ v · x− t (x).

The assumptions of convexity and semi-continuity are commonly imposed in the literature
on identification. In first-price auctions (example 3), it is often assumed that b+ G(b)

∂G(b)/∂g(b) ,
where b is a bid and G (b) is the cumulative distribution function of the highest competitor
bid, is increasing (see Assumption C2 in Guerre et al., 2000, for example). This assumption
is identical to assuming that t (x) is convex if it is twice differentiable. To see this, note that
the first-derivative of t (x) = xG−1 (x) is equal to

∇t (x) = G−1 (x) + x

∂G (G−1 (x)) /∂b

and substitute x = G (b). Similarly, in the hedonic demand model, if the price function,
t (x), were non-convex, then certain choices would be sub-optimal under the linear random
co-efficients structure.

4.2 Identification with Rich Choice Environments

Our first identification result considers the case when t (x) is differentiable. It is a corollary
of Proposition 1, applied for each fixed value of Z = z.

Corollary 1. Suppose Assumption 1 is satisfied and agent i chooses outcome xi ∈ X . If t(·)
is differentiable at xi, then vi is identified. In particular, if t (·) is differentiable for all x in
the support of X, then FV,Z is identified.
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The result shows that choosing x ∈ X uniquely determines the type of all agents making
that choice. For this reason, we label such a choice environment as “rich.”

Two special cases of this result are identification of the hedonic choice models and first-price
auctions. To see this, recall our calculation of the derivative of t (x) = xG−1 (x) in first-
price auctions (example 3). This derivative, calculated at x = G (b), is precisely the virtual
valuation of a bidder bidding b.

In the higher-dimensional case of hedonic demand models, the marginal cost of increasing xj

is ∂t (x) /∂xj. Therefore, if consumer i chooses a product or a consumption bundle described
by xi, then optimality implies that ∇t (xi) is equal to the vector of marginal willingness to
pay for each of the components, vi.

4.3 Partial Identification with Coarse Choice Sets

The complementary case is when t (x) is not differentiable. This case is particularly relevant
when X is not a connected subset of RJ , for example, when the choice set is discrete. For
any fixed value of the characteristic z, we observe the distribution of X that agents with
that characteristic choose. Because the set ∂t(x) is not a singleton, without any further
restrictions, the identified set may not be a singleton.

Proposition 2. Suppose Assumption 1 is satisfied and agent i chooses outcome xi ∈ X . The
identified set of FV,Z is given by

FI =
{
FV,Z : for all z and A ⊆ X , Pr (X ∈ A|z) ≤

∫
1 {v ∈ ∪x∈A∂t (x)} dFV |Z=z

}
.

Moreover, under the additional restriction that FV |Z=z admits a density fV |Z=z, then (i) the
identified set is given by

FI =
{
FV,Z : for all z and A ⊆ X , Pr (X ∈ A|z) =

∫
1 {v ∈ ∪x∈A∂t (x)} fV |Z=z (v) dv

}
,

and (ii)FI is non-empty if and only if P
(
X ∈ X †|z

)
= 1.

The result follows because P (X = x|z) ≤ P (v ∈ ∂t (x)| z) =
∫

1 {v ∈ ∂t (x)} dFV |Z=z. The
first inequality is a consequence of Proposition 1, and the second is definitional. Observe
that the identified set is convex. This is the case because the restrictions on FV |Z are linear.

Under the restriction that FV |Z=z admits a density, Pr
(
V ∈ V†|z

)
= 1 because the com-

plement of V† relative to RJ is a set of measure zero. Thus, ties occur with zero proba-
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bility. Therefore, Pr
(
X ∈ X †|z

)
= 1. Pr (X ∈ A|z) ≤

∫
1 {v ∈ ∪x∈A∂t (x)} fV |Z=z (v) dv =∫

1
{
v ∈ ∪x∈A∂t (x) ∩ V†

}
fV |Z=z (v) dv ≤ Pr

(
X ∈ A ∩ X †|z

)
= Pr (X ∈ A|z). The first in-

equality follows from Proposition 1, the first equality follows because Pr
(
V ∈ V†|z

)
= 1, the

second inequality follows from the fact that v ∈ ∂t (x) ∩ V† implies that x is the unique max-
imizer of profits for v. The last equality follows because Pr

(
X ∈ X †|z

)
= 1. That concludes

the proof of (i). The “only if” part of (ii) is immediate from the arguments showing that
Pr
(
X ∈ X †|z

)
= 1.

A one-dimensional version of this result for trading models is given in Larsen and Zhang
(2018). Specifically, consider an agent, indexed by i, who picks actions that result in a
probability of trade equal to xi. Assume that the agent can also pick actions that instead
yield either xi + ∆1 or xi − ∆2 for some ∆1,∆2 > 0. Since xi is optimal, it must be that

t (xi) − t (xi − ∆1)
xi − (xi − ∆1)

≤ vi ≤ t (xi) − t (xi + ∆2)
xi − (xi + ∆2)

.

Convexity of t (·) implies that the local deviations considered above are both necessary and
sufficient for optimality.

Our result extends naturally to a higher-dimensional version of this problem. It also applies
to other scenarios. As an example, consider a hedonic demand model with a discrete product
set. In this context, our result identifies the set to which the vector representing consumers’
willingness to pay for specific product characteristics belongs.

In higher dimensions, when the support of actions, and consequently the support of x is
discrete, the set ∂t (x) at some of these points in the support has positive volume in RJ .
However, if the action space includes both discrete and continuous elements, the set ∂t (x)
may neither be a singleton nor have positive volume in RJ . Instead, it forms a convex set
with an affine hull aff (∂t (x)), that has a dimension dim (aff (∂t (x))) lying between 0 and J .

The argument suggests a two-step estimation strategy. The first step recovers the subgradi-
ents ∂t (x), which may or may not be points. Computing the subgradients may first require
estimating the function t (x) in some contexts. The second step estimates the CDF FV |Z . A
common example is auctions, a case that we further develop in our application in Section 5.7

7Aspelund and Russo (2023) is a recent example that analyzes a scoring auction using this estimation
procedure in a context that does not squarely fit into prior models.
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4.4 Identification with Preference Shifters

We now show that even with coarse choice sets, variation in an observable shifter of preference,
denoted z, can be used to point identify the model. We start with the case when z is a special
regressor (Lewbel, 2000), that is, v = u + z, with u ⊥ z. Then, we generalize this result to
the case when v = u+ g(z), where g (·) is a non-linear function.

The rest of this section makes the following assumptions on the distribution of u and the
support of outcomes:

Assumption 2. (i) The random variable u is independent of z and admits a density fU (u).

(ii) There exists a constant k > 0 such that exp (k |u|) fU (u) is Lebesgue integrable.

This assumption requires that the tails of u decline sufficiently rapidly. It is satisfied by
most commonly used parametric forms, including multivariate normals and extreme-value
distributions as well as finite mixtures of these distributions.

Assumption 3. The convex hull of X has a non-empty interior.

This assumption allows to consider choice sets that are not “rich,” which is the focus of this
subsection. In particular , if the set X contains a finite number of options, the function t(·)
will be differentiable everywhere except in the set X † ⊆ X . However, if the distribution of
valuations admits a density, X belongs to X † with probability one, which implies that all
choices with positive probability result in a non-singleton ∂t (x). Assumption 3 still requires
some limited richness of the choice set. A non-empty interior implies that the dimension of
X and of t (·) is J . Thus, the choice of x is informative about every dimension of payoffs.

With these assumptions, we have the following result:

Theorem 1. Suppose that v = u+ z and Assumptions 1, 2 and 3 are satisfied. If z has full
support on RJ , then fU (·) is identified. Moreover, fU (·) is identified if there exist a linear
subspace L ⊆ RJ such that (i) for every x in the support of X, t(x) is differentiable in every
direction d ∈ L and (ii) z has full support on L⊥, the orthogonal complement of L.

The condition of the theorem requires that z has sufficient variation in order to trace the
tails of the distribution of u. This condition is similar to those used in other arguments that
rely on special regressors.
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Proof. Lemma 2 implies that there exists a set A ∈ X̄ that has strictly positive Lebesgue
measure and is contained in a translated simplicial cone. Let Fk ⊆ L1

(
RJ
)

be the space of
functions that satisfy the integrability condition in Assumption 2 for a given value of k. Fix
k > 0 such that fU ∈ Fk for the true fU . Define the operator A : Fk → L∞

(
Rd
)

as

A [f ] (z) =
∫

1 {u+ z ∈ ∪x∈A∂t (x)} f (u) du.

Note that A [fU ] (z) = Pr (X ∈ A|z) for the true value of fU . We will show that A [f ] = 0
a.e. implies that f = 0 a.e. if f ∈ Fk. This statement implies that fU is identified because if
A [fU ] (z) = Pr (X ∈ A|z) for two candidate functions fU , then linearity of the map A implies
that the two functions have to be identical.

Towards a contradiction, suppose A[f ] = 0 and f is nonzero on a set with positive Lebesgue
measure. It is without loss to assume that ∪x∈A∂t (x) is contained in a simplicial cone
because if it is contained in C + {z0} where C is a simplicial cone, then we can re-define
the operator above by replacing the argument of A [f ] with z′ = z − z0.. Let N (C) be the
normal cone to C. By the definition of Fk, there exists λ ∈ int N (C) sufficiently small so
that exp (2πu · λ) f (u) is integrable for all f ∈ Fk. Fix one such value of λ. Rewrite

A [f ] (z) =
∫

1 {u+ z ∈ ∪x∈A∂t (x)} f (u) du

=
∫

1 {u ∈ ∪x∈A∂t (x)} f (u− z) du

= exp (2πz · λ)
∫

1 {u ∈ ∪x∈A∂t (x)} exp (−2πu · λ) exp (2π (u− z) · λ) f (u− z) du.

Since exp (2πz · λ) > 0 a.e., A [f ] = 0 a.e. ⇐⇒ χ̂∂t(x),λ (ξ) · ¯̂
fλ (ξ) = 0, where ¯̂

fλ is the
conjugate of the Fourier transform of fλ (u) = exp (2πu · λ) f (u) and χ̂∂t(x),λ is the Fourier
transform of χ∂t(x),λ = 1 {u ∈ ∂t (x)} exp (−2πu · λ). Since ¯̂

fλ (ξ) is continuous, the set of
values ξ where ¯̂

fλ (ξ) ̸= 0 is open. Further, since ∥fλ∥1 > 0, the support of ¯̂
fλ (ξ) is non-

empty. Therefore, there is a non-empty open set Ξ, such that ¯̂
fλ (ξ) ̸= 0 for all ξ ∈ Ξ.

Because χ̂∂t(x),λ (ξ) · ¯̂
fλ (ξ) = 0, it must be that for all ξ ∈ Ξ, χ̂∂t(x),λ (ξ) = 0. However, this

conclusion contradicts Lemma 1 below, which shows that χ̂∂t(x),λ is not zero on any open set
Ξ ⊆ RJ .

If t(x) is differentiable in every direction d ∈ L for every x ∈ X̄ then there is an orthonormal
transformation T of outcomes and values so that the resulting t̃ (Tx) = t (x) is differentiable
in the last d arguments, where d is the dimension of the subspace L. Thus, it is without
loss of generality to assume that t(x) is differentiable in the last d arguments. Therefore, the
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subdifferential ∂t (x) is the Cartesian product of a set V1 ⊆ RJ−d and a point v2 ∈ Rd. Thus,
fU1 (·), the distribution of U2, which is defined as the last d elements of U , is identified from
the observed distribution of the last d elements of ∂t (x) − {z}. Consider the distribution of
U1, defined as the first J − d elements of U , conditional on z and U2 = u2 in the support
of U2. Let z = [z1, z2], where z1 has full support in RJ−d and z2 ∈ Rd that, for simplicity is
assumed to take a constant value of zero.

Let X̄1 ⊆ RJ−d be the projection of X̄ ⊆ RJ onto its first J − d dimensions. Consider the
problem of an agent with type v = [v1, u2] of choosing sequentially the optimal x1 ∈ X̄1 first
followed by a choice of x2 so that [x1, x2] ∈ X̄ . Given a choice of x1, the agent’s problem
is to choose x2 to maximize u2x2 − t2 (x2|x1), where t2 (x2|x1) = t ([x1, x2]). The conjugate
function t∗2 (u2|x1) denotes the maximum utility that an agent of type v can achieve in the
second step if it chooses x1 in the first one. Now, consider the first problem. The agents solves
maxx1∈X1 v1x1 − t1 (x1|u2), where t1 (x1|u2) = t∗2 (u2|x1). As a function of its first argument,
t1 (·|u2) is a lower semi-continuous convex function supported over a non-empty convex and
compact set X̄1 by Assumption 1. fU1|u2 (·) satisfies part (ii) of Assumption 2 for almost
all u2, and X1 satisfies assumption 3. Thus, by the first part of this Theorem, fU1|u2 (·) is
identified for almost all u2. Therefore, the joint distribution of U is identified.

The proof technique is based on Fourier deconvolution methods. Under Assumption 2, the
distribution of v is obtained using a convolution of the distributions of u and z. The choice of
a specific set A restricts the set of v to ∪x∈A∂t (x). Therefore, by observing P (X ∈ A|z) for
various values of z, we obtain information about the distribution of u because P (X ∈ A|z) =∫

1 {u+ z ∈ ∪x∈A∂t (x)} f(u)du.

The result below states the key technical result in the argument, which is based on finding a
vector λ such that λ · v > 0 for all v ∈ ∂t (x) and then working with the Fourier transform
of the function χ∂t(x),λ (u) = 1 {u ∈ ∪x∈A∂t (x)} exp (−2πu · λ):

Lemma 1. Suppose ∂t (x) has strictly positive Lebesgue measure and ∂t (x) is contained in
a (closed) simplicial cone. Then, there exists λ ∈ int N (A), with |λ| arbitrarily small, such
that

χ̂C,λ (ξ) =
∫

1 {u ∈ C} exp (−2πu · (iξ + λ)) du

is not zero on any open set Ξ ⊆ RJ .

The formal proof is presented in Appendix A. The argument has three parts. First, we
show that χ̂C,λ (ξ), when viewed as a function with complex domain, is holomorphic in
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a neighborhood of RJ . This result is obtained by verifying the conditions necessary for
differentiating under the integral sign when dealing with functions that have complex domain
(Theorem 13.8.6(iii) in Dieudonné, 1976). Second, we apply Theorem 5 in Shabat (1992)
which implies that if χ̂C,λ (ξ) is zero on an open subset of RJ then it is zero everywhere.
Third, we observe that this second conclusion contradicts the fact that χC,λ (u) is, up to
scale, a density function.

The technical arguments are a significant generalization of Theorem A.2 in Agarwal and
Somaini (2018). This previous result, which is special to a school choice model, dealt the
case in which ∂t (x) is a convex cone. When ∂t (x) is a convex cone, the Fourier transform
of χ∂t(x),λ (u) can be computed in closed form, circumventing the need for more general
arguments.

A limitation of Theorem 1 is that it requires a linearly separable regressor z that is indepen-
dent of u. Our next result applies relaxes this requirement by considering the model

v = u+ g(z),

where g : RJ → RJ with the dimension of z, dz ≥ J . We use an argument inspired by Allen
and Rehbeck (2017) to show that the function g (·) is identified under the following additional
restrictions:

Assumption 4. (i) J ≥ 2 and the function g (z) is given by (g1 (z1) , . . . , gJ (zJ)). Moreover,
each gj (·) is differentiable at each point.

(ii) For any l, k ∈ {1, . . . , J}, the partial derivatives of each E [Xl|z] with respect to zk exist,
are continuous, and are non-zero for all z.

(iii) The support of Z is rectangular.

(iv) The expectation of U exists.

The main restrictions are in parts (i) and (ii). Part (i) assumes that each of the regressors
zj is component-specific and that there are at least two components. We will discuss the
need for at least two components after presenting our main result. Extensions that allow
for additional regressors, some of which are common, can be accommodated by following
arguments in Allen and Rehbeck (2017). Part (ii) assumes that the expected value of the
optimal x is smooth and the partial derivatives are non-zero. This assumption would be
violated if a component of g were not globally either a strict complement or substitute with a
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component of X. Since this quantity in observed in the data, this assumption is falsifiable.8

Parts (iii) and (iv) are technical regularity assumptions. Part (iii) allows us to move from
knowing the derivatives of g to determining the function up to a location. Part (iv) is a weak
condition that is implied, for example, by Assumption 2(ii).

Proposition 3. Suppose that Assumptions 1 and 4 are satisfied and u ⊥ z. Then, g is
identified on its support up to the location and scale normalizations g (z0) = 0 and ∂

∂zj
gj (z0) ∈

{−1, 1} for some j, respectively.

Proof. Define v∗ (g) = E [maxx∈X x · (u+ g) − t (x)| g]. This expectation exists because

E
[
max
x∈X

x · (u+ g) − t (x)
∣∣∣∣ g] = E [X∗ (u+ g) · (u+ g) − t (X∗ (u+ g))| g]

≤ E [|X∗ (u+ g)| · |u+ g| + |t (X∗ (u+ g))| g] ,

which is finite since X∗ belongs to compact-valued set, u is independent of g and has finite
expectation, and t (·) is a continuous function. Since X∗ (v) is measurable, we have that

v∗ (g) = max
X:RJ →X

∫
[X (u) · (u+ g) − t (X (u))] fU (u) du.

The equality follows from setting X (u) = X∗ (u+ g) ∈ arg maxx∈X x · (u+ g) − t (x) to show
a weak inequality in one direction, and the definition of v∗ (g) for the other. Re-writing, we
get that

v∗ (g) = max
X:RJ →X

[
g ·
∫
X (u) fU (u) du+

∫
[X (u) · u− t (X (u))] fU (u) du

]
.

Observe that the maximand is linear in g, and therefore equidifferentiable with respect to
each gj. Moreover, the partial derivative of the maximand with respect to each gj is uniformly
bounded because X is compact. Therefore, by the generalized envelope theorem of Milgrom
and Segal (2002) (see Theorem 3),

∇v∗ (g) =
∫
X∗ (u+ g) fU (u) du = E [X∗ (u+ g (z)) |g (z) = g] .

Differentiating, we get that

∂E [Xk| z]
∂zl

= ∂E [X∗
k (u+ g (z))| z]
∂zl

= ∂l,kv
∗ (g (z)) ∂gl (zl)

∂zl

,

8This assumption substitutes for the non-testable assumption in Allen and Rehbeck (2017) that the
second-order cross partials of E [maxx∈X x · (u + g (z)) − t (x) |z] are non-zero.
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where the derivatives exist by Assumption 4(iii). Therefore, for any value of g and z, and
any pair k and l, we can identify

∂gl (zl)
∂zl

/
∂gk (zk)
∂zk

. (3)

The rest of the proof uses the arguments in Corollary S.5.1 in Allen and Rehbeck (2017).
First, we identify ∂

∂zj
gj (z0) up to scale. Optimality and independence of u and z implies that

(E [X∗ (u+ g (z))| z] − E [X∗ (u+ g (z′))| z′]) · g (z) ≥ (E [X∗ (u+ g (z))| z] · u− E [X∗ (u+ g (z′)) · u| z′])

− (E [t (X (u+ g (z)))| z] − E [t (X∗ (u+ g (z′)))| z′]) .

An identical expression holds in which the left hand side switches the roles of z and z′.
Adding these two inequalities, we get that

(E [X∗ (u+ g (z))| z] − E [X∗ (u+ g (z′))| z′]) · (g (z) − g (z′)) ≥ 0.

If E [X∗ (u+ g (z))| z] ̸= E [X∗ (u+ g (z′))| z′], then it must be that g (z) ̸= g (z′) and

(E [X∗ (u+ g (z))| z] − E [X∗ (u+ g (z′))| z′]) · (g (z) − g (z′)) > 0. (4)

Now, consider a small change in the j−th component starting from z0. We know that

(E [X∗ (u+ g (z0))| z0] − E [X∗ (u+ g (z0 + ∆j))| z0 + ∆j]) · (g (z0) − g (z0 + ∆j)) > 0,

where ∆j is the j−th standard basis vector multplied by a small ∆ > 0. Because regressors
are dimension-specific, we have that the sign of gl (z0,j) − gl (z0,j + ∆) is identified for all
∆ > 0. Taking the limit of this difference divided by ∆ as ∆ → 0 implies that the sign of
∂gj(z0,j)

∂zj
is identified for all j. The scale normalization implies that the partial derivatives of

g are known at z0.

Identification of ∂gj(z0,j)
∂zj

and the ratios in equation (3) implies that for all l, ∂gl(z)
∂zl

is identified
for all z in its support. To show that this is sufficient to identify g (z) up to scale and location,
assume that there are two functions g (z) and g̃ (z) that have the same partial derivatives
and let δ (z) = g (z) − g̃ (z). Since ∇δ (z) = ∇g (z) − ∇g̃ (z) = 0 and the support of z is
rectangular, we have that δ is the constant function. The location normalization implies that
g is identified.
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The main observation is an envelope theorem argument to show that the gradient of v∗(g) is
equal to the expected value of X, which is observed. This argument is akin to Roy’s identity
from consumer theory. The second derivatives then can be identified and can be used to
learn about the derivatives of g.

There are two differences from Allen and Rehbeck (2017) that are worth noting. First, they
study a more general model choice structure than ours but focus on the identification of g (z)
while treating the distribution of u as a nuisance parameter. We identify this distribution.
Second, we shorten their proof substantially by side-stepping the “representative agent’s
problem” they define.9

Theorems 1 and 3 immediately imply the following result:

Corollary 2. Suppose the hypotheses of Theorem 1 and Proposition 3 are satisfied. If v =
u+ g (z) and g (z) has full support on RJ , then fV |Z (v|z) is identified.

5 Application: Combinatorial Auctions

5.1 Empirical Setting

In our empirical application, we analyze the combinatorial auction used to procure school
lunches in Chile. The National Board for School Aid and Scholarships (JUNAEB) contracts
with private catering companies to prepare meals and deliver them to schools in the 90
territorial units (TUs). The typical contract has a three-year duration and covers one or
multiple TUs. Epstein et al. (2002) and Kim et al. (2014) provide additional institutional
details; we continue to abbreviate the latter as KOW.

Each year, JUNAEB uses a combinatorial auction to procure meals for about a third of the
TUs. A bid consists of a list of TUs, i.e., a package, and a per-meal quote. Bidders have to
meet some technical and financial requirements to qualify for the auction. Depending on their
qualifications, bidders may face restrictions on the packages they can bid, such as a maximum
number of TUs or a maximum number of meals. The number of bids a single bidder can
submit is limited to 10,000. JUNAEB determines the contract allocation by solving a linear
program that minimizes the total cost and ensures contracts for all TUs.

9We found this direct proof to be simpler than applying the general conditions of Theorems 1 and 2 in
Allen and Rehbeck (2017). A cost of our approach is that we forego the appealing interpretation of the
observed quantity E [X|z] as the solution to the representative agent’s problem.
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Table 1: Auction Characteristics

Panel A: Auction environment
Total meals allocated (millions) 80.76
# TUs allocated 32
# bidders 20
# bids submitted 43,136

Panel B: Awarded allocation
Payment (pesos per meal) 410.96
# winning bidders 9

Note: In these tables and elsewhere, the number of meals refers to the total number of meals served per year.
Winning bidders are allocated three-year contracts.

We use the same dataset as in KOW. The primary dataset contains all the bids submitted to
the auctions. Two supplementary datasets contain TU-specific geographical and demographic
information and bidder-specific financial and technical ratings. The information in these two
datasets allows us to construct all the relevant restrictions to the cost-minimization problem.
We focus on the 2003 auction, allowing us to compare our results to KOW.

Table 1 describes the auction environment and the outcome. JUNAEB allocated 32 TUs,
totaling about 81 million meals. There were twenty bidders, which together bid on over
43,000 packages. Nine of the bidders were included in the final allocation of 32 TUs. The
average price bid was 423 pesos per meal. At the end of 2003, the exchange rate was 599
Chilean pesos per U.S. dollar (OECD, 2016). The average price bid in U.S. dollars was
therefore 71 cents per meal.

Table 2 describes the bids in greater detail. Panel A shows that there is significant hetero-
geneity in the total number of meals across TUs, with the 25th percentile of TUs serving
just over 2 million meals and the 75th percentile serving over 3 million meals. The number
of package bids containing a TU also varies substantially, although each TU receives at least
one bid from each bidder. Panel B shows that bidders face varying restrictions on the maxi-
mum number of meals they are allowed to bid and the maximum number of TUs they may
be allocated. There is also significant heterogeneity in the number of packages that a bidder
may bid on. However, the number of packages on which a bidder does place a bid is much
lower than the number of feasible packages. Finally, panel C shows that the bid price per
meal exhibits significant heterogeneity across firm-package pairs.
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Table 2: TUs, Bidders, and Bids

Min 25th
per-

centile

Median 75th
per-

centile

Max

Panel A: TUs
Meals (millions) 1.64 2.07 2.40 3.09 3.79
# bidders on TU 20 20 20 20 20
# bids on packages containing TU 1,008 4,219 7,204 9,370 11,198

Panel B: Bidders
Max meals allowed (millions) 25.92 35.11 37.77 38.77 50.02
Max TUs allowed 1 3 4 8 8
# TUs bid on 9 29 32 32 32
# packages bid on 17 505 1,164 3,679 9,157
# feasible packages 32 2,124 10,906 31,353 31,353

Panel C: Bids
Price (pesos per meal) 299.59 401.92 421.41 440.35 690.65
# TUs in package 1 4 5 7 8

Note: The unit of observation is the TU in Panel A, the firm in Panel B, and the bid (i.e., the firm-package
pair) in Panel C.
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5.2 Empirical Model

5.2.1 Setup

Bidders and Packages: Our empirical setting is a special case of Example 4, Mechanisms
with Private Information and Independent Types and Quasi-linear Utilities. Each TU, in-
dexed by k ∈ {1, . . . , K}, must be allocated to one of the firms in the auction, indexed by
i ∈ {1, . . . , I}. Let j ∈ {1, . . . , J} index subsets of TUs, or packages, where J = 2K − 1
is the number of possible nonempty packages. For each firm i, the outcome space X is the
space of vectors xi = {xij}j, where xij denotes firm i’s probability of being allocated package
j. Denote firm i’s action with ai ∈ Ai = RJ

+, a vector of bids indicating a price for each
package. A firm may choose to bid only on a subset of packages. If a firm does not bid on a
particular package, we adopt the convention that the bid on that package is infinite. Package
bidding allows firms to express complementarities or substitutabilities in costs of supplying
multiple geographical units.

Costs: Let cij denote firm i’s cost of supplying package j, which we collect into the vector
ci = {cij}j. In the notation of section 2.1, bidder i’s valuation vector is vi = −ci. We assume
independent private valuations conditional on observables zi:

Assumption 5. The cost vector of each bidder i, denoted ci, is independent of the costs
of the other bidders and is distributed according to FC|zi

. Each bidder’s valuation is private
information. Bidder characteristics zi and conditional cost distributions FC|zi

are common
knowledge.

Types: We want to estimate the conditional valuation distribution FC|zi
, but the high-

dimensional nature of this problem makes estimation challenging. The spaces of outcomes,
actions, and valuations all have dimension equal to the number of possible packages, J =
2K − 1, which grows exponentially in the number of TUs, K. This curse of dimensionality
makes calculating ∂t (·) challenging.

We reduce the dimensionality of the problem by assuming that firms’ cost vectors ci ∈ RJ (and
therefore their valuation vectors) are a linear function of lower-dimensional types γi ∈ RL:

Assumption 6. Costs satisfy ci = Mγi for all firms i, where M is a known J × L matrix
with L ≪ J .
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Our objective is therefore to estimate the distribution of types FΓ|zi
given each bidder i’s

observables zi.

This approach contrasts with that in KOW, which solves the dimensionality problem by
assuming that the markups that a firm bids, which are endogenous, are a low-dimensional
function of package characteristics. Instead, we directly place restrictions on the distribution
of firm costs as opposed to markups. These restrictions will allow us to ease the computation
of types consistent with optimal bidding. As we will see below, these restrictions will reduce
dimensionality when computing ∂t (·) .

5.2.2 Mechanism and Equilibrium

Mechanism: In the notation of section 2.2, the Chilean combinatorial auction can be rep-
resented by an allocation rule x̃i (ai, a−i) and a transfer function t̃i (ai, a−i) for each firm i.
Winning firms are paid the amount of their winning bids: t̃i (ai, a−i) = −ai · x̃i (ai, a−i).

The winning allocation is determined by finding the lowest total price at which all TUs can
be served. This problem, known as the winner determination problem, can be written as an
integer program. Stack the allocation rules for each firm into the function x̃ : ∏i Ai → ∏

i Xi.
The winner determination problem solves

x̃ (a1, . . . , aI) ∈ argmin
x

∑
i

∑
j

xijaij (5)

s.t. x ∈ X̃ ,

where x = {xij}i,j and X̃ ⊆ X I is a set of allowable allocations. The constraints on X̃
imposed by JUNAEB are (i) each TU k must be served – for each k, ∑i

∑
j:k∈j xij ≥ 1; (ii)

no firm wins more than one package – for each i, ∑j xij ≤ 1; and (iii) a set of constraints on
each firm indicating limits on their market share.10 These constraints, including the third
set, are linear in xij. Generically, ties in the winner determination problem happen with
probability zero.

Equilibrium: Before submitting her bid, a bidder observes her own type and characteristics,
as well as her competitors’ characteristics. A (mixed) strategy is a function σi (·; zi, z−i) :
RL → ∆Ai where the domain is the bidder’s type γi and the range is a distribution over bid
vectors. Let FA−i|zi,z−i

(a−i) denote the distribution of firm i’s opponents’ bids conditional on
10The full set of feasibility constraints is presented in appendix B.1.



29

observables. A change of variables in equation (1) yields firm i’s expected outcome function

xA (ai) =
∫
x̃i (ai, a−i) dFA−i|zi,z−i

(a−i) (6)

and (pay-as-bid) expected payment function

tA (ai) = −ai · xA (ai) . (7)

Assumption 7. Bidder strategies follow a Bayesian Nash equilibrium.

The strategy profile (σ∗
1, . . . , σ

∗
I ) is a Bayesian Nash equilibrium if for each firm i and bid

vector ai with σ∗
i,ai

> 0,

ai ∈ argmax
a∈A

−ci · xA (ai) − tA (ai)

= argmax
a∈A

(−ci + a) · xA (a)

= argmax
a∈A

(a−Mγi) · xA (a) (8)

As described in section 3.2, this setup bears close resemblance to GPV in the case of a
single-unit auction.

5.2.3 Revealed Preference Type Bounds

The optimality condition (8) forms the basis for our estimation strategy. Given that bid-
der i submits ai, define the type bounds Gi ⊆ RL, the set of types γi for which ai ∈
argmaxa∈A (a−Mγi) ·xA (a). Then, under Assumption 6, −ci is in the subdifferential ∂t (x)
if and only if γi ∈ Gi. That is, Gi is the lower-dimensional analogue in type space to the
subdifferential.

Equivalently, Gi is the set of types such that for all deviating bid vectors a′
i,

Mγi · [xA (ai) − xA (a′
i)] ≤ ai · xA (ai) − a′

i · xA (a′
i) . (9)

For each deviation a′
i, the revealed preference inequality (9) specifies a halfspace in the

domain of types. The type bounds Gi are the intersection of these halfspaces for all possible
deviations, forming a convex polyhedral set.

For each firm i, the empirical objects we target are: (i) the distribution FA−i|zi,z−i
of oppo-

nents’ bids, (ii) the type bounds Gi, and (iii) the conditional valuation distribution FΓi|zi
.
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The estimated bid distribution is used to evaluate the allocation function xA(·) via simula-
tion of equation (6). The type bounds are obtained from the revealed preference inequality
(9). These bounds are inputs to estimation of the conditional type distribution, our ultimate
object of interest. We now describe our parameterizations of the bid and type distributions;
the latter parameterization is only required for a subset of our empirical results.

5.2.4 Bid Distribution

Firm bids depend on two package characteristics. A package’s volume is its annual number
of meals to be supplied, in millions. Abusing notation, we also use qk to denote the volume
of constituent TU k, so that qj = ∑

k∈j qk. Our density measure captures the geographic
concentration of TUs within a package and takes values in the unit interval.11 We discretize
these variables into volume and density bins {Q0,Q1 . . . ,QLvolume} and {D0,D1, . . . ,DLdensity},
respectively.

Assume that the distribution of FAi|zi,z−i
of firm i’s per-meal equilibrium bids (from the

perspective of i’s competitors) is given by

aij

qj

=
∑
k∈j

qk

qj

β̃TU
ik +

Lvolume∑
l=1

1 {qj ∈ Ql} βvolume
l,sizei

+
Ldensity∑

l=1
1 {dj ∈ Dl} βdensity

l,sizei
+ ϵij, (10)

where sizei is a firm-specific categorical variable taking values “small” and “large.” The first
right-hand side term is a TU volume-weighted sum of base prices β̃TU

ik charged for each
constituent TU k. The base prices are distributed as

β̃TU
ik = βTU

k + βincumbincumbik + ωik, (11)

where incumbik is an indicator for whether firm i is the incumbent supplier in TU k.12

The base prices depend on (across-firm) means
(
βTU

k

)
k

and an incumbency shifter βincumb,

11We define the density of package j as dj =
∑

r

(∑
k∈j∩r

qk

qj

)2

, where the TUs have been partitioned

into regions indexed by r ∈ {1, . . . , R}. This density measure can be interpreted as the probability that two
randomly selected meals from package j will come from the same region. Packages with higher densities
have TUs which are more geographically concentrated. Notice that by definition, single-TU packages are
contained in a single region, and thus have densities of one. The opposite extreme is a geographically diffuse
package with many TUs, each in its own region and with roughly the same number of meals; this package
has a low density.

12The third set of allocation constraints in the winner determination problem includes constraints on how
many TUs each firm is allowed to win. No firm is allowed to win more than 8 TUs. We call a firm small if
it is allowed to win at most 6 TUs and large if it is allowed to win 7 or 8 TUs.
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as well as a normally distributed shock ωi = (ωi1, . . . , ωiK) ∼ N (0,Σω). The next two
terms are bid adjustments due to volume and density, where the smallest volume bin
and largest density bin are omitted. The bid adjustment amounts βvolume =

{
βvolume

l,size

}
l,size

and βdensity =
{
βdensity

l,size

}
l,size

are different for small and large firms. The final term is an
idiosyncratic error ϵij; it is normally distributed with mean zero and variance σ2

ϵ,|j| depending
on the number of TUs in the package.13

5.2.5 Type Distribution

Combinatorial auctions attempt to take advantage of cost complementarities across units. By
allowing package bidding, they seek to mitigate the exposure problem present in simultaneous
or sequential single-unit auctions.14 The effectiveness of package bidding depends on the
magnitude of and across-firm heterogeneity in these complementarities, as well as on the
degree of pass-through from cost complementarities to bid discounts.

We allow for complementarities in costs for supplying package j to depend on the volume qj

and the density dj of the package. The map M from types to costs is specified as follows:
firm i’s per-meal cost of supplying package j is

cij

qj

=
∑
k∈j

qk

qj

γTU
ik +

Lvolume∑
l=1

1 {qj ∈ Ql} γvolume
il +

Ldensity∑
l=1

1 {dj ∈ Dl} γdensity
il (12)

This cost is the sum of (i) the TU volume-weighted average of the costs γT U
ik of supplying

each TU k in the package, (ii) cost complementarities or substitutabilities due to economies
or diseconomies of scale, and (iii) the same due to economies or diseconomies of density.
Equation (12) above parallels equation (10), which parameterizes the distribution of firm i’s
bid on package j.

Firm i’s type is therefore γi =
((
γvolume

il

)
l
,
(
γdensity

il

)
l
,
(
γTU

ik

)
k

)
∈ RL.

For a subset of results, we will parametrize the conditional type distribution FΓi|zi
as a

function of firm size and incumbency. Conditional on these observables, the type distribution
is multivariate normal with variance-covariance matrix Σν . The mean values of the volume

13Our bid distribution parameterization largely parallels that of KOW. We define package density differ-
ently and allow the variance-covariance matrix Σω to be unrestricted.

14As an extreme example, suppose a firm views TUs A and B as perfect complements: its cost of supplying
the two-unit package is 400 pesos per meal, while its cost of supplying either of the single-unit packages is
infinite. Without package bidding, the firm always faces the risk of being allocated only one of the TUs, a
prospect that it finds infinitely undesirable. With package bidding, the firm can choose to bid on the two-unit
package but not the single-unit packages, so that it will never be allocated only a single TU.
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and density components are µvolume
sizei

and µdensity
sizei

respectively, again potentially differing by
firm size. Mean TU costs are given by µTU + µincumbincumbi, the sum of a common mean
vector and an incumbency shifter.

5.3 Estimation Procedure and Results

The estimation procedure mimics the identification approach. First, we construct the out-
come function xA (ai) and the expected payment function tA (ai) by estimating the bid dis-
tribution FAi|zi,z−i

. Next, we estimate the type bounds Gi using the revealed preference
inequality (9). Finally, we estimate the conditional type distribution FΓi|zi

.

5.3.1 Bid Distribution

We estimate the bid distribution parameters θa ≡ (θa,1, θa,2) in two stages. First, we estimate
θa,1 =

(
βvolume, βdensity,

(
σ2

ϵ,n

)
n

)
and TU base prices

(
β̃ik

)
ik

from equation (10) using feasible
generalized least squares (FGLS). Second, we estimate θa,2 =

((
βTU

k

)
k
, βincumb,Σω

)
from

equation (11) again using FGLS, taking the first-stage
(
β̃ik

)
ik

estimates as data.

Across all firms and all TUs, the mean TU base price is about 464 pesos per meal, though
this masks considerable variation, particularly across TUs. Figure 2 plots the distribution of
TU base prices. The mean base price for TU k, denoted βTU

k in equation (11), ranges from
356 to 607 pesos per meal. Within a TU, firms’ base prices are correlated. However, we
estimate that the incumbent firm in a TU submits bids for that TU that are 17.62 pesos per
meal lower on average than those of its non-incumbent competitors, suggesting a potential
incumbency cost advantage.

We find evidence of significant downward bid adjustments due to volume and density. Bid
adjustments become more negative as package volume and density increase. We estimate
that the prices bid on the largest (highest-volume) packages we observe are, on average, 25.7
to 29.3 pesos lower than those on the smallest packages. Likewise, we estimate that average
bids on low-density packages are 1.1 to 5.6 pesos higher than those on high-density ones.
Figure 3 shows the estimated bid adjustment functions for small and large firms. Small
firms offer smaller discounts for package volume than large firms do. However, the pattern
is reversed for density: it is small firms that offer the greater discounts for package density.

The estimated bid distribution fits the data well; we compare it to the observed bid distri-
bution in figure B.1.
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Figure 2: Distribution of Firms’ TU Base Prices

Note: The blue boxplots show the distribution of non-incumbent firms’ base prices charged for each TU,
denoted β̃T U

ik in equation (10). Boxes show the 25th percentile, median, and 75th percentile. Lower whiskers
extend to the lowest observed data point that is within a distance of 1.5 times the interquartile range (IQR)
from the 25th percentile. Likewise, upper whiskers extend to the highest observed data point within 1.5
times the IQR from the 75th percentile. Blue dots indicate outliers. Each orange dot indicates the base price
charged by the incumbent firm serving that TU.
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Figure 3: Estimated Bid Adjustment Functions

(a) Volume (b) Density

Note: Figures show estimated bid adjustments due to economies of volume and density. Shaded areas show
95 percent confidence intervals computed using the standard errors of the estimated coefficients. The lowest
volume bin and the highest density bin are omitted base categories, so bid adjustments are in comparison to
low-volume, high-density packages.

5.3.2 Outcome and Payment Functions

Given bid distribution parameter estimates θ̂a, we estimate the outcome function xA (·) and
payment function tA (·) via simulation of equations (6) and (7), respectively. For each firm
i, we use Sa = 1,000 competitor bids a−i from the distribution FA−i|zi,z−i

(
·; θ̂a

)
.

Firms vary substantially in their probabilities of being included in the final allocation. Two
firms are estimated to win with zero probability at their submitted bids, while the win
probabilities of another four firms are estimated to be greater than 95 percent. As expected,
firms’ expected revenues −tA (ai) increase in their win probabilities, as seen in figure 4. Firms
who submit lower average bids tend to have a greater probability of winning a package.
Although not shown, win probabilities are, perhaps surprisingly, not very correlated with the
number of bids submitted.

5.3.3 Type Bounds

Next, for each firm i, we estimate the set of types Gi that satisfy the revealed preference
inequality (9). There are two challenges in this exercise.

First, there are a large number of potential deviations and it is computationally costly to check
all of them. Simulating the expected allocation function xA (·) requires repeated solutions
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Figure 4: Bidders’ Average Prices, Win Probabilities, and Expected Revenues

(a) Win Probability vs. Average Price Bid (b) Win Probability vs. Expected Revenue

Note: Each circle represents a bidder. The marker size is proportional to the number of bids submitted by
that firm. The horizontal axis indicates the firm’s probability of winning any package—that is, the sum of
the elements of xa(ai), the expected allocation vector. In the left panel, the vertical axis indicates the firm’s
average per-meal price bid. In the right panel, the vertical axis indicates the firm’s expected revenue, ta(ai).
These figures omit two firms which are estimated to have zero win probability.

of the winner determination problem at each of the deviating bid vectors and each of the
Sa = 1,000 draws from the estimated bid distribution. Checking many deviations also results
in a complex description of the set Gi.15

The second challenge is that the expected allocation function xA (·) is estimated with simu-
lation error. Considering larger deviations – to bid vectors farther away from the observed
ai – allows the differences xA (ai) −xA (a′

i) and ai ·xA (ai) −a′
i ·xA (a′

i) in inequality (9) to be
estimated more precisely, decreasing the variance but at the cost of a larger than necessary
set Gi.

To address these challenges, we estimate Gi by checking the inequality in equation (9) for
a subset of deviations a′

i ∈ Ãi ⊂ Ai. Observe that this results in a larger set of types that
contains the true set Gi. We consider two types of deviating bid vectors a′

i. In each deviation,
we change the firm’s bid on a single package j and hold constant its bids on other packages,
a′

i,−j = ai,−j. The two types of deviations are:

1. Downward deviations: For each package j in a subset J̃i of possible packages,
decrease the bid on package j by 50 pesos per meal.

15As the number of halfspaces grows, polyhedral operations like checking set membership (i.e., checking
whether a given type vector lies in Gi), projection onto subspaces, and elimination of dimensions become
more difficult.
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2. Grid deviations: For each single-unit package j (including j that we do not observe
the firm bidding on in the data), deviate to bidding 300, 350, 400, 450, and 500 pesos
per meal on j. This grid of per-meal bids roughly spans the range of observed prices
bid.

We impose two additional constraints on the sets Gi: (i) costs are below bids (Mγi ≤ ai)
and (ii) TU costs are nonnegative (γTU

i ≥ 0). These inequalities don’t require simulating the
allocation function xA (·) so they are easier to compute.

The revealed preference inequalities and the two additional constraints yield a convex poly-
hedral set, which is in most cases bounded. Each downward deviation implies a lower bound
on some linear combination of type dimensions: if firm i did not find it optimal to decrease
its bid on package j by 50 pesos per meal, then its cost of supplying j must be at least some-
thing. Constraint (i) generates upper bounds on linear combinations of type dimensions.16

The grid deviations and constraint (ii) ensure that TU costs are bounded even if there are
TUs that firm i does not bid on in the data. The downward deviation packages J̃i are chosen
to generate independent variation in each of the type dimensions: volume economies, density
economies, and TU costs. We describe the construction of this set in appendix B.3.

Figure 5 shows type bound estimates for an example firm. There are four volume economies
(the lowest volume bin is omitted), two density economies (the highest density bin is omitted),
and 32 TU costs. Each black whisker in figure 5 plots a projection of the polyhedral set Gi

onto a single dimension. This example firm is not allowed to win any packages involving
volume bins 3 and 4 or density bin 2, so we are unable to bound its realizations of those
dimensions. The estimated bounds suggest that this firm has economies of volume, though
we cannot rule out very small diseconomies of volume.17 Likewise, this firm exhibits either
small economies or small diseconomies of density. Its TU costs are often but not always
bounded from above by both its prices bid on single-unit packages and the TU base prices
it bids.18

16In principle, we could also obtain upper bounds from the revealed preference inequalities implied by up-
ward deviations (increasing per-meal bids on packages in J̃i). However, computing these requires simulating
xA (·) and the resulting upper bounds are not that informative conditional on the bid upper bounds. As a
result, we do not include upward deviations in Ãi.

17Higher values for the type dimensions γvolume
il and γdensity

il increase the per-meal package cost in equation
(12). Hence, a more negative value for γvolume

il indicates a larger economy of volume, while a more positive
value indicates a larger diseconomy of volume.

18This does not contradict package costs being weakly below package bids because the cost of a single-unit
package may also be a function of volume and/or density economies. For example, TU 401 has enough meals
to fall in the first (non-omitted) volume bin. If j is the single-unit package containing only TU 401, then
firm i’s per-meal cost of supplying package j is cij

qj
= γvolume

i1 + γTU
i,401 ≤ aij

qij
. Since for this firm, we can’t rule

out negative values of γvolume
i1 , we also can’t rule out some TU costs γTU

i,401 above the per-meal price bid aij

qj
.
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Figure 5: Example Firm Type Estimates

Note: This figure plots type estimates for an example firm i. For each of the TU costs γTU
ik , the blue dot

indicates firm i’s bid on the single-unit package containing only TU k. The orange dot indicates firm i’s
base price bid on TU k, denoted β̃ik. Each black whisker is the projection of the type bounds Gi onto a
single dimension. The left green violin plots show the marginals of the proposal distribution Gi. The right
purple violin plots show the marginals of the estimated type distribution FΓi|zi

(
· | θ̂γ

)
. Both the proposal

distribution and the estimated distribution are conditional on the type bounds Gi.
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5.3.4 Type Distribution

Finally, we estimate the parameters θγ =
(
µvolume, µdensity,

(
µTU

k

)
k
, µincumb,Σν

)
of the condi-

tional type distribution FΓi|zi
.The likelihood of θγ given firm i’s type bounds Gi is

L (θγ | Gi) =
∫

1 {γi ∈ Gi} dFΓi|zi
(γi; θγ) . (13)

We will simulate this likelihood because it need not yield a closed form solution. In principle,
it suffices to count how many draws from FΓi|zi

(· | θγ) lie in the set Gi, though a precise
estimate of a small likelihood – if FΓi|zi

(· | θγ) puts little mass on Gi – may require a large
number of draws. We instead evaluate the likelihood at each candidate θγ using importance
sampling (Ackerberg, 2009), using draws from a proposal distribution Gi which we reweight
by their likelihood ratios:

L (θγ | Gi) =
∫

1 {x ∈ Gi}
fΓi|zi

(x; θγ)
gi (x) dGi(x) (14)

≈ 1
S

S∑
s=1

1 {xs ∈ Gi}
fΓi|zi

(x; θγ)
gi (x) ,

where {xs}S
1 denotes S simulated draws from the proposal distribution Gi. In practice,

drawing from the unconditional proposal distribution is computationally burdensome because
the high-dimensional nature of this problem implies that obtaining a draw xs ∈ Gi has low
probability. To solve this issue, we take advantage of the fact that the bounds Gi have been
previously computed and draw xs from a set that is either equal to or slightly larger than Gi.

Finally, we estimate θγ using a Metropolis-Hastings algorithm with the simulated version of
L (θγ| Gi).19 We describe our importance sampling and Metropolis-Hastings procedures in
greater detail in appendix B.4.

The green violin plots in figure 5 show, for the same example firm i as above, the marginals of
the proposal distribution Gi.20 The purple violin plots show the marginals of the estimated
type distribution FΓi|zi

(
· | θ̂γ

)
. Both distributions are shown conditional on the example

19This algorithm generates a Markov chain which converges to the posterior distribution. We take the
posterior mean parameters as our point estimate θ̂γ . We use the posterior mean rather than the mode
because the former is more robustly estimated when the parameter space is high-dimensional and the posterior
distribution has potentially many local maxima. We use a flat prior, so the posterior probability of each
candidate θγ equals the likelihood. The posterior mode is therefore equivalent to the maximum likelihood
estimator.

20Tables B.4 and B.5 report summary statistics for the sampled posterior draws for all firms, and Figure
B.2 compares the distributions of firms’ TU base prices β̃ik and TU costs γTU

ik .
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firm’s bids – that is, conditional on Gi.21

For this example firm, our estimated type bounds do not rule out economies of volume
of up to 118 pesos per meal, but nor do they indicate that such large volume economies
(i.e., such negative values for the volume economy dimensions) are likely. Recall that the
type bound estimates (black whiskers) plotted in figure 5 are one-dimensional projections
of the polyhedral set Gi. Thus, figure 5 shows that there exists a vector of the other type
dimensions at which we can rationalize volume economies of 118 pesos per meal. However,
the proposal distribution draws place little mass in this region. Since we use a conditional
proposal distribution that is uniform on Gi, this indicates that Gi also has little volume in
that region. The estimated type distribution places even less mass in that area; it also has
little mass on values of the TU costs above the firm’s per-meal prices bid.22

5.4 Markups and Efficiency

5.4.1 CA Markups

Our first set of markup estimates uses only the estimates of the type bounds Gi and does not
require the additional parameterization of the type distribution. For each bid aij submitted
by firm i on package j, we compute the minimum and maximum markups aij−cij

aij
= aij−Mjγi

aij

that are consistent with the type bounds Gi. The distributions of these lower and upper
bounds across bids are shown in blue and orange, respectively, in Figure 6. We bound the
aggregate markup on awarded bids from below by 0.5 percent of the total payment to winning
bidders and from above by 31.6 percent.

Second, we compute expected markups using the estimated type distribution FΓi|zi

(
· | θ̂γ

)
conditional on the type bounds Gi. That is, for each bid aij, we compute E

[
aij−Mjγi

aij
| γi ∈ Gi, zi; θ̂γ

]
.

Details on this procedure are provided in appendix B.5. Figure 6 plots the distribution of
these expected markups across firm-package pairs in green. The expected aggregate markup
on awarded bids is 5.2 percent. This point estimate is similar to that of KOW, which esti-
mates an aggregate markup of 4.8 percent on awarded bids.

Finally, we report estimates of costs and markups separately for each awarded bid in table
B.6.

21We drop the firm’s three infeasible dimensions from the proposal distribution, as we describe in appendix
B.4.

22We are able to estimate the joint distribution of firm i’s feasible and infeasible type dimensions because
estimation of θγ pools information from across firms. However, conditioning on the bounds Gi is not further
informative about the firm’s values of those infeasible dimensions.
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Figure 6: Distribution of Estimated Bid Markups

Note: Each histogram observation is a bid that a firm i submits on a package j. The blue and orange
histograms show the distribution of lower and upper bounds, respectively, on bid markups. The green
histogram shows the distribution of mean markups. The blue, orange, and green vertical lines respectively
indicate the lower bound, upper bound, and mean markups for the awarded allocation.
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5.4.2 Efficient Benchmark

Next, we compare the combinatorial auction to a first-best benchmark by simulating counter-
factual outcomes under the Vickrey-Clarke-Groves (VCG) mechanism.23 The VCG allocation
x̃i (ci, c−i) =

{
x∗

ij

}
j

minimizes the total allocation cost, solving

x∗ ∈ argmin
x

∑
i

∑
j

xijcij (15)

s.t. x ∈ X

where x = {xij}i,j and X ⊆ ∏
i Xi is the same set of allowable allocations imposed in the

combinatorial auction (CA). The CA minimizes total payments (the sum of winning bids),
while the VCG mechanism minimizes total allocation cost, but both are subject to the al-
location constraints imposed in Chile. Under the VCG mechanism, each winning bidder is
paid the amount of the (positive) externality generated by its participation in the mecha-
nism: t̃i (ci, c−i) =

(
minx

∑
i′ ̸=i

∑
j xi′jci′j

)
−
(∑

i′ ̸=i

∑
j x

∗
i′jci′j

)
. This is the difference between

(i) the minimal allocation cost achievable in firm i’s absence and (ii) the minimal allocation
allocation cost when i is included.

For computational tractability, we restrict the set of firm-package pairs that we consider.24

We consider feasible packages for a firm that fall into one of four categories: (i) all packages
bid by at least one firm in the observed auction, (ii) all single-TU and two-TU packages, (iii)
all packages that contain all TUs in a region, and (iv) all packages containing eight TUs from
a single region. These restrictions imply that the cost of this approximate VCG allocation
that we simulate is an upper bound on the true minimum cost. However, we expect the
approximation error to be small because if complementarities amongst other packages not
included in this set were substantial, then at least one firm should have bid the package in
the observed auction and the package would be included in set (i).

We estimate economically large efficiency gains in moving from the observed CA to the
VCG mechanism. The CA allocation cost is estimated to be about 12.2 percent higher
than the (approximate) first-best VCG allocation cost. The VCG mechanism also results

23In the counterfactual analysis, following KOW, we exclude two firms who submit exceptionally low bids,
resulting in high estimated win probabilities and markups. KOW states that “Despite their competitive
prices, these firms did not win any units [in the observed auction] and were disqualified from the allocation
process because of quality considerations.” We do include these two low-quality firms in the estimation of
the bid and type distributions under the assumption that their competitors did not know they would be
disqualified at the time of bidding.

24Without any restrictions other than the maximum allowable number of TUs that can be allocated to a
firm (eight), there are 100,716,104 possible firm-package pairs.
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Table 3: Combinatorial Auction vs. VCG Mechanism

Mean SD p5 p95
Panel A: Combinatorial auction

Cost 389.3 2.4 385.4 393.1
Producer surplus 21.6 2.4 17.9 25.6
Payment 411.0 - - -

Panel B: VCG mechanism
Cost 341.7 8.3 327.3 353.6
Producer surplus 40.4 7.7 29.0 54.3
Payment 382.1 5.7 372.0 390.1

Panel C: Difference (CA - VCG)
Cost 47.6 8.1 35.9 61.5
Producer surplus -18.8 7.6 -32.6 -7.2
Payment 28.9 5.7 20.9 38.9

Note: This table presents summary statistics of simulated CA and VCG outcomes under the estimated type
distributions Fγi|zi

(
· | θ̂MH

)
, conditioning on the cost bounds Gi. All values are in pesos per meal.

in higher producer surplus, defined as payments to firms less allocation costs. Although
total payments to firms are lower under VCG, this is more than offset by the lower cost of
supplying the packages. Table 3 reports summary statistics of simulated allocation costs,
producer surpluses, and payments to firms under the observed combinatorial auction and
counterfactual VCG mechanism.

To investigate the source of the efficiency gains, we then recompute allocation costs under each
auction design under alternative cost economies, holding fixed the simulated VCG allocation
draws. We report the results in table 4. In each panel, the first row shows the same baseline
allocation cost as in table 3.25

Perhaps the most important source of VCG efficiency gains is the ability to allocate pack-
ages with the greatest firm-specific cost complementarities. Shutting down heterogeneity in
economies of volume and density barely changes the CA allocation cost but increases the

25Our estimates of the efficiency gains from the VCG allocation are larger than those obtained by KOW,
which finds that the combinatorial auction and the VCG auction yield very similar overall costs. A potential
reason for the difference is that KOW directly parametrize markups instead of costs. This approach reduces
the heterogeneity in markups relative to our model. If we project our estimated markups on the same set of
characteristics used in KOW and volume, and recompute the VCG allocation assuming that only packages
that a bidder placed a bid on in the combinatorial auction is considered, then the VCG allocation yields a
mean cost of 372.2 pesos per meal. Thus, some of the difference between our estimates and those in KOW
that arise from the decision to estimate markups versus directly targeting the distribution of costs.
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Table 4: CA and VCG Allocation Costs Under Alternative Cost Economies

Mean SD p5 p95
Panel A: Combinatorial auction

Baseline 389.3 2.4 385.4 393.1
Common economies 390.6 3.4 384.9 396.0
Zero economies 406.1 3.4 400.4 411.6

Panel B: VCG mechanism
Baseline 341.7 8.3 327.3 353.6
Common economies 371.6 6.0 362.2 381.7
Zero economies 388.1 5.6 379.0 397.8

Panel C: Difference (CA - VCG)
Baseline 47.6 8.1 35.9 61.5
Common economies 19.0 6.0 9.0 28.5
Zero economies 18.0 5.7 8.6 27.4

Note: In this table, we fix the simulated VCG allocation draws obtained under the estimated type distribu-
tions Fγi|zi

(
· | θ̂MH

)
. In each row in Panels A and B, we compute summary statistics for the CA or VCG

allocation cost under alternative cost economies. The baseline case shows the same allocation cost as in table
3. To compute allocation costs under common cost economies, we set the volume and density cost parameters
to their across-firm and across-draw averages. To compute allocation costs under zero cost economies, we set
the volume and density cost parameters to be zero. All costs are in pesos per meal.

VCG allocation cost by almost 9 percent. The VCG efficiency gain over the CA is reduced
from 12.2 percent to 4.9 percent. These alternative allocation costs are computed by setting
each firm’s volume and density cost parameters to the across-firm and across-draw averages
of each parameter (see table 4, second row). Eliminating economies of volume and density
altogether mechanically increases allocation costs under both mechanisms, but only further
reduces the VCG efficiency gain from 4.9 percent to 4.4 percent (see table 4, third row).
Thus, the VCG mechanism exploits firm-specific heterogeneity in economies better than the
combinatorial auction.

In theory, through package bidding, these firm-specific cost complementarities can also show
up in the CA. In practice, the pass-through of these complementarities from package costs to
package bids is somewhat limited. This occurs in part because a firm’s bid on a given package
j competes with not only its competitors’ bids, but also its own bid on other packages j′.
As in the multi-product firm’s pricing problem, the multi-package bidder internalizes the
potential for “business stealing” by one of its bids from each of its other bids.
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6 Conclusion

A large literature studies the identification of specific econometric models of behavior (see
Matzkin, 2007 and the ensuing literature). Ensuring identification is essential in empirical
analysis because it is a presumption for the validity of many statistical procedures (Newey,
1994, for example). This paper develops a unified revealed-preference approach for identifi-
cation in a class of models with a linear payoff structure. The approach is valid in a number
of single-agent environments as well as in non-cooperative games; and allows for both contin-
uous and discrete actions, or a combination of the two. We characterize the identified set of
models, show how to achieve point identification with excluded shifters, and use our results
to suggest an estimation approach.

A number of important examples are a special case of our results. These include single-
agent models where revealed preferences are used to identify preferences, for example, in
multinomial choice models (McFadden, 1974, 1981); and reports made to strategy-proof
mechanisms such school choice (Abdulkadiroglu et al., 2017) and second-price auctions. We
also cover identification in games when the empirical strategy is based on implications of
mutual best-responses in both private information settings (e.g., Guerre et al., 2000) as well
as full-information cases (e.g., Berry et al., 1995).

These results also apply to cases beyond previously studied settings. As a case in point,
our results apply immediately to recent extensions of scoring auctions studied in Asker and
Cantillon (2008), including non-linear multi-dimensional scoring auctions as in Hanazono et
al. (2022) and scoring rules that combine discrete actions with continuous bids as in Aspelund
and Russo (2023). These extensions are useful in a number of settings such as the decision of
whether or not to provide add-on service, which is a common feature of a number of auction
settings.

Our results also suggest an estimation approach, which we illustrate by revisiting the combi-
natorial procurement auction for Chilean school lunches studied in Epstein et al. (2002) and
KOW. Instead of directly parameterizing bidder markups, our approach targets the distribu-
tion of bidder costs and synergies during estimation. This provides an alternative approach
in a combinatorial auction setting. We estimate that in the 2003 combinatorial auction, the
aggregate markup on awarded bids was 5.2 percent. However, a more efficient allocation
was possible. We find that the allocation cost under the status-quo combinatorial auction
was 12.2 percent higher than it would have been under the first-best Vickrey-Clarke-Groves
mechanism. In theory, package bidding in combinatorial auctions allow bidders to express
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across-unit cost complementarities. In practice, in Chile, we find that the pass-through of
these complementarities from package costs to package bids is limited. The VCG mech-
anism’s economically large efficiency gains arise from its ability to take full advantage of
across-firm heterogeneity in economies of volume and density.

There are a number of issues that are left for future work. First, a strong restriction in
our framework is that payoffs are linear in the outcome space, (x, t), which consists of an
expected allocation and an expected transfer. Linear separability in outcomes and transfer
rules out risk aversion. Relaxing this functional form is important. Second, this paper
focuses its contributions on identification and largely applies prior methods during estimation.
Specifically, we simplified estimation by restricting the dimension of heterogeneity in costs
and by parametrizing the cost distribution. Relaxing these assumptions during estimation
is also left for future work. Finally, we abstract away from issues such as endogeneity and
unobserved heterogeneity, which are useful dimensions in which to extend our approach.
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Appendix

A Lemmata

Lemma 2. Let t : RJ → R∪{∞} be a proper closed convex function supported over a convex
compact set X that has has strictly non empty interior in RJ . Then there exist B ⊂ X such
that ∂t (B) =

{
v ∈ RJ : v ∈ ∂t (x) , x ∈ B

}
has a non empty interior in RJ and is contained

in a translated simplicial cone.

Proof. The conjugate function t∗ is a a proper closed convex function Rockafellar (1970,
Theorem 12.2). Because t is proper and lower semi-continuous Rockafellar (1970, page 52),
and X is compact, for every v ∈ RJ , t∗ (v) = supx∈X v · x − t (x) is attained for some x ∈
X . and ∂t∗ (v) ⊂ X . Therefore, the support of t∗ is RJ . The set D where the function
f ∗is differentiable is a dense subset of RJ , and the gradient mapping ∇t∗ : v → ∇t∗ (v)
is continuous on D Rockafellar (1970, Theorem 25.5). Take any v0 ∈ D and let x0 =
∇t∗ (v0) = ∂t∗ (v0) ∈ X . Let S = {x1, x2, ..., xJ} ⊂ X be such that the convex hull of
S ∪ {x0} has has strictly positive Lebesgue measure in RJ . Such set S exists because X
has has strictly positive Lebesgue measure in RJ . Let x̄ ∈ RJ be such that x0 is in the
interior of the convex hull of S ∪ {x̄}. Such an x̄ exists although it may not be an element
in X . Let B̄(x0) be neighborhood of x0 in the interior of the convex hull of S ∪ {x̄}. By the
continuity of the gradient mapping ∇t∗, there exist a neighborhood, V̄ (v0) ⊂ RJ such that
B =

{
x ∈ RJ : x = ∇t∗ (v) , v ∈ V̄ (v0)

}
⊂ B̄(x0). Because for all x ∈ B, x ∈ ∂t∗ (v) ⊂ X

for some v ∈ V̄ (v0), it follows that B ⊂ X . Moreover, if v ∈ V̄ (v0), then x ∈ ∂t∗ (v) ⊂ B

Rockafellar (1970, Theorem 25.6). Therefore, v ∈ ∂t (x) ⊂ ∂t (B) Rockafellar (1970, Theorem
23.5). Thus, ∂t (B) ⊃ V̄ (v0) has has strictly positive Lebesgue measure in RJ .

The conjugate function t∗ is a a proper closed convex function Rockafellar (1970, Theorem
12.2). Because t is proper and lower semi-continuous Rockafellar (1970, page 52), and X is
compact, for every v ∈ RJ , t∗ (v) = supx∈X v · x − t (x) is attained for some x ∈ X . and
∂t∗ (v) ⊂ X . Therefore, the support of t∗ is RJ . The set D where the function f ∗is differen-
tiable is a dense subset of RJ , and the gradient mapping ∇t∗ : v → ∇t∗ (v) is continuous on
D Rockafellar (1970, Theorem 25.5). Take any v0 ∈ D and let x0 = ∇t∗ (v0) = ∂t∗ (v0) ∈ X .
Let S = {x1, x2, ..., xJ} ⊂ X be such that the convex hull of S∪{x0} has has strictly positive
Lebesgue measure in RJ . Such set S exists because X has has strictly positive Lebesgue mea-
sure in RJ . Let x̄ ∈ RJ be such that x0 is in the interior of the convex hull of S ∪ {x̄}. Such
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an x̄ exists although it may not be an element in X . Let B̄(x0) be neighborhood of x0 in the
interior of the convex hull of S∪{x̄}. By the continuity of the gradient mapping ∇t∗, there ex-
ist a neighborhood, V̄ (v0) ⊂ RJ such that B =

{
x ∈ RJ : x = ∇t∗ (v) , v ∈ V̄ (v0)

}
⊂ B̄(x0).

Because for all x ∈ B, x ∈ ∂t∗ (v) ⊂ X for some v ∈ V̄ (v0), it follows that B ⊂ X . More-
over, if v ∈ V̄ (v0), then x ∈ ∂t∗ (v) ⊂ B Rockafellar (1970, Theorem 25.6). Therefore,
v ∈ ∂t (x) ⊂ ∂t (B) Rockafellar (1970, Theorem 23.5). Thus, ∂t (B) ⊃ V̄ (v0) has has strictly
positive Lebesgue measure in RJ .

Now, we show that B is contained in a translated simplicial cone. Consider the choice set
Y = S ∪ {x̄} with transfers fY (x) = t (x) for x ∈ S and fY (x̄) sufficiently low so that all
outcomes in B̄(x0) with transfers t (·) would be dominated by the outcomes in Y . Let f (·)
be the convex hull of the function fY (·). The function f (·) is the largest convex function
that lies below fY (·) and coincides with with on the set Y . The subdifferential ∂f (x̄) is a
translated simplicial cone because the set Y includes J+1 affinely independent points in RJ .
If v ∈ ∂t (B), then an agent with value v weakly prefers some x ∈ B to any x′ ∈ S. However,
by construction, dominance implies that some element of S ∪ {x̄} is strictly preferred to
x. Thus, the agent strictly prefersx̄ to x and, by transitivity, to all x′ ∈ S. Therefore,
∂t (B) ⊂ ∂f (x̄) which is a translated simplicial cone.

Lemma 3. Let C be a subset of X ⊆ RJ with strictly positive Lebesgue measure. Assume
that C ⊆ C̄+{x}, where C̄ is a simplicial cone and + denotes Minkowski summation. Then,
there exists λ ∈ int N (C̄), such that

χ̂C,λ (ξ) =
∫

C
exp (−2πv · (iξ + λ)) dv

is not zero on any open set Ξ ⊆ RJ . Moreover, χ̂C,λ̃ (ξ) is not zero on any open set Ξ ⊆ RJ

for any λ̃ = αλ for α ∈ (0, 1) .

Proof. We first introduce some notation. First, define the matrix AC̄ =


a1

· · ·
aJ

 so that v ∈ C̄

if and only if v = AC̄u for some u ≥ 0. By definition, AC̄ is invertible because C̄ is simplicial.
It is without loss of generality to assume that |det (AC̄)| = 1. Second, let N

(
C̄
)

be the dual
cone to C̄. Note that int N

(
C̄
)

is non-empty because C̄ is simplicial. Fix a λ ∈ int N
(
C̄
)

for the remainder of this proof.

Towards a contradiction, assume that χ̂C,λ (ξ) is zero on an open set Ξ ⊆ RJ . We will
show below that χ̂C,λ (ξ) when viewed as a funtion on Ξλ = {ξ ∈ CJ : ξ = y + iz, x ∈
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RJ , λ
2 − z ∈ int N (C̄)}, which contains RJ , is holomorphic. Under this hypothesis, Theorem

5 in Shabat (1992) implies that χ̂C,λ (ξ) = 0 for all ξ ∈ RJ . However, this contradicts the
fact that χ̂C,λ (ξ) is, up to scale, the characteristic function of a random variable with density
1 {v ∈ C} exp (−2π ⟨v, λ⟩). This density, and therefore χ̂C,λ (ξ), is non-zero because C has
strictly positive Lebesgue measure.

The second part follows immediately because if λ ∈ int N
(
C̄
)

then so is λ̃ = αλ for any
α ∈ (0, 1).

Hence, it only remains to show that χ̂C,λ (ξ) is holomorphic in Ξλ. To do this, we first use
the differentiation under the integral sign theorem for complex variables (Theorem 13.8.6(iii)
in Dieudonné, 1976) to show that ∂χ̂C,λ(ξ)

∂ξk
exists on Ξλ and is equal to

∂χ̂C,λ (ξ)
∂ξk

=
∫

1 {v ∈ C} ivk exp (−2πv · (iξ + λ)) dv.

Fix ξ−k = (ξ1, . . . , ξk−1, ξk+1, . . . , ξJ) and define the function fC (v, ξk; ξ−k) = 1 {v ∈ C} exp (−2πv · (iξ + λ)).
To apply the result, we need to show that fC (v, ξk; ξ−k) is (i) analytic in ξk for almost all v,
(ii) measurable in v for each ξ, and (iii) there exists an integrable function g (v) such that
for almost all ξ, |fC (v, ξk; ξ−k)| ≤ g (v). Requirement (i) follows from the definition of fC (·).
Measurability is immediate given the definition of fC (v, ξk; ξ−k).

To show (iii) we will use the fact that
∣∣∣fC̄+{x} (v, ξk; ξ−k)

∣∣∣ ≥ |fC (v, ξk; ξ−k)| for all v and
show that

∣∣∣fC̄+{x} (v)
∣∣∣ ≤ g (v) = 1

{
v − x ∈ C̄

} ∣∣∣exp
(
−2πv · λ

2

)∣∣∣ for all ξ ∈ Ξλ, where g (v) is
integrable. To this end, we first bound |fC̄+{x} (v) | as follows:

∣∣∣fC̄+{x} (v)
∣∣∣ =

∣∣∣1 {v − x ∈ C̄
}

exp (−2πv · (iξ + λ))
∣∣∣

= 1
{
v − x ∈ C̄

}
|exp (−2πv · (i (y + iz) + λ))|

= 1
{
v − x ∈ C̄

} ∣∣∣∣∣exp
(

−2πv ·
(
λ

2 +
(
λ

2 − z

)))∣∣∣∣∣
≤ 1

{
v − x ∈ C̄

} ∣∣∣∣∣exp
(

−2πv · λ2

)∣∣∣∣∣ ≡ g (v) .

The first equality uses the definition ξ = y + iz, The second equality follows the fact that

|exp (−2πv · (i (y + iz) + λ))| = |exp (−2πv · iy)| |exp (−2πv · (λ− z))|

= |exp (−2πv · (λ− z))| .
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The inequality uses the fact that λ
2 − z ∈ int N (C̄), implying that v ·

(
λ
2 − z

)
> 0. We now

show that g (v) is integrable.

∫
g (v) dv =

∫
1
{
v − x ∈ C̄

} ∣∣∣∣∣exp
(

−2πv · λ2

)∣∣∣∣∣ dv
=
∫

1
{
A−1

C̄
(v − x) ≥ 0

} ∣∣∣∣∣exp
(

−2πv · λ2

)∣∣∣∣∣ dv
=
∫
RJ

+

∣∣∣∣∣exp
(

−2π (AC̄u+ x) · λ2

)∣∣∣∣∣ du
= exp

(
−2πx · λ2

)∫
RJ

+

exp
(

−2πAC̄u · λ2

)
du.

The first equality uses the definition of AC̄ . The second substitutes u = A−1
C̄

(v − x), and
uses the fact that |det (AC̄)| = 1 and u ≥ 0. The third rewrites the integrands as the product
of two terms and pulls out the constant

∣∣∣exp
(
−2πx · λ

2

)∣∣∣ from the integral sign.

Since exp
(
−2πx · λ

2

)
is finite, we need to show that

∫
RJ

+
exp

(
−2πAC̄u · λ

2

)
du is finite. Ob-

serve that λ
2 ∈ int N

(
C̄
)
. Re-write the integral as

∫
RJ

+

exp
(

−2πAC̄u · λ2

)
du

=
∫
RJ

+

exp
(

−2π ∥u∥AC̄

u

∥u∥
· λ2

)
du

=
∫
SJ−1

+

∫ ∞

0
rJ−1 exp

(
−2πrAC̄u

′ · λ2

)
drdσ (u′)

=
∫
SJ−1

+

1
(2πAC̄u

′ · λ
2 )J

∫ ∞

0
sJ−1 exp (−s) dsdσ (u′)

=
∫
SJ−1

+

1
(2πAC̄u

′ · λ
2 )J

Γ (J) dσ (u′) ,

where σ (u′) is the proper surface measure of the sphere SJ−1, SJ−1
+ = SJ−1 ∩ RJ

+, u′ = u
∥u∥ ,

and Γ (·) is the Gamma function. The first equality is trivial, the second from a change of
variables u′ = u

∥u∥ and r = ∥u∥, the third from a change of variables s = −2πrAC̄u
′ · λ

2 and
the last from the definition of the Gamma function.

Because λ
2 ∈ int N

(
C̄
)
, we have that (AC̄u

′ · λ
2 ) is strictly positive, with a strictly positive
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minimum κ > 0. Hence, we have that
∫
SJ−1

+

1
(2πAC̄u

′ · λ
2 )J

Γ (J) dσ (u′) < (2πκ)−J Γ (J)
∫
SJ−1

+

1dσ (u′) .

Since σ
(
SJ−1

)
is finite, we have that the right hand side is finite.

Finally, Osgood’s Lemma implies that χ̂C,λ (ξ) is holomorphic if it is continuous in ξ. For
any h ∈ CJ ,

|χ̂C,λ (ξ + h) − χ̂C,λ (ξ)| ≤
∫

1 {v ∈ C} |exp (−2πv · (i (ξ + h) + λ)) − exp (−2πv · (iξ + λ))| dv.

Since ξ ∈ Ξλ, there exists ε > 0 such that for h ∈ CJ with ∥h∥ < ε, ξ + h ∈ Ξλ. As
both ξ + h and ξ are in Ξλ, the integrand is dominated by 2g(v), which is integrable. And
1 {v ∈ C} |exp (−2πv · (i (ξ + h) + λ)) − exp (−2πv · (iξ + λ))| = exp (−2πv · λ) |exp (−2πv · ih) − 1| →
0, as h → 0. Therefore, by the dominated convergence theorem, |χ̂C,λ (ξ + h) − χ̂C,λ (ξ)| → 0
as h → 0.

B Empirical Appendix

B.1 Combinatorial Auction Mechanism

In this section, we present the full winner determination problem, as presented in KOW’s
appendix G. The decision variables xij ∈ {0, 1} indicate whether firm i is allocated package
j. The combinatorial auction minimizes total payments (the sum of winning bids) by solving
the integer program
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min
x

∑
i

∑
j

xijaij

s.t.
∑

i

∑
j:k∈j

xij ≥ 1 for all k

∑
j

xij ≤ 1 for all i

∑
j

xijqij ≤ q̄i for all i

∑
j

xij |j| ≤ n̄i for all i

Ir ≤
∑

i

∑
j:j∩r ̸=∅

xij ≤ Īr for all r

∑
i

∑
j

xij ≥ I

In words, the constraints are:

1. Each TU k is assigned;

2. Each firm i wins at most one package;

3. Each firm i wins at most q̄i total meals;

4. Each firm i wins at most n̄i total TUs;

5. Each region r is served by between Ir and Īr firms; and

6. At least I total firms are included in the allocation

In KOW, the authors write that the second constraint isn’t explicitly imposed in the actual
auctions, though it turns out that this constraint is not binding in most years. We follow
KOW in including this second constraint. We never observe I, the minimum number of firms
that must win in a given auction, needed to check the final constraint; we drop this final
constraint in our application.
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Table B.1: Estimates of Bid Adjustment Function Parameters βvolume and βdensity

Small firms Large firms
Volume 1 -12.899 -16.158

(0.929) (1.085)
Volume 2 -17.752 -22.742

(0.934) (1.077)
Volume 3 -20.429 -27.144

(0.937) (1.076)
Volume 4 -25.683 -29.265

(1.234) (1.077)
Density 1 3.919 0.797

(0.125) (0.076)
Density 2 5.629 1.094

(0.155) (0.091)

Note: Standard errors are in parentheses.

B.2 Bid Distribution

B.2.1 Bid Adjustment Functions

The bid adjustment functions hvolume
a

(
·; βvolume

sizei

)
and hdensity

a

(
·; βdensity

sizei

)
are step functions in

the volume qj and density dj, respectively, of the package j. The volume adjustment function
is constant in each of nine equally spaced intervals {[0, 3], . . . , [24, 27]} that cover the range of
package volumes observed in the data. The density adjustment function is constant in each
of the intervals {[0, 0.5), [0.5, 1), [1, 1]}, with the third bin capturing the mass of packages
whose constitutent TUs lie entirely within one region.26 We normalize bid adjustments in
the smallest volume bin and largest density bin to zero.

B.2.2 Parameter Estimates

In tables B.1, B.2, and B.3, we present estimates θ̂a of the bid distribution parameters. In
figure B.1, we compare the observed distribution of per-meal prices bid to our estimated
distribution.

26Package volume is measured in millions of meals per year. We define package density in footnote 11; it
takes values in the unit interval.
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Table B.2: Estimates of Standard Deviations σϵ of Idiosyncratic Bid Shocks

Package size
(# TUs)

Standard
devia-

tion
1 13.757
2 4.870
3 3.901
4 3.211
5 2.523
6 2.054
7 1.319
8 1.502

Figure B.1: Observed and Estimated Bid Distributions

Note: The blue histogram shows prices bid by all firms on all packages on which they submitted bids in the
data; an observation is a firm-package pair. To construct the orange histogram, for each firm-package pair,
we simulate 1000 draws from the estimated bid distribution; each observation is a firm-package-draw triple.
Each histogram is normalized to represent a discrete probability distribution.
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Table B.3: Estimates of Means βTU and Standard Deviations σω of TU Base Prices

β σω

TU 401 500.949 14.839
TU 402 440.899 12.154
TU 403 515.466 13.684
TU 404 606.711 33.822
TU 405 580.172 33.026
TU 501 501.379 30.620
TU 502 421.620 19.436
TU 503 430.904 17.976
TU 504 417.353 21.962
TU 505 433.111 11.867
TU 506 445.616 13.667
TU 507 450.197 12.639
TU 508 404.258 14.435
TU 510 416.788 9.913
TU 511 433.948 29.586
TU 901 510.563 25.836
TU 902 512.277 24.509
TU 903 585.829 36.108
TU 904 443.816 18.065
TU 905 486.187 22.731
TU 906 474.471 19.505
TU 907 499.643 24.880
TU 908 528.013 24.865
TU 909 581.423 38.627
TU 1201 603.123 48.260
TU 1331 415.935 13.356
TU 1332 378.521 11.529
TU 1333 356.387 11.532
TU 1334 404.167 11.000
TU 1335 392.525 21.249
TU 1336 404.571 12.959
TU 1339 444.407 20.426
Incumbency shifter -17.621

Note: The variance-covariance matrix Σω is unrestricted, but for clarity only the (square roots of the)
diagonal elements are reported here.
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B.3 Type Bounds

As part of estimating the type bounds G̃i, we rule out downward deviations to bid vectors
a′

i in which firm i decreases its bid on a single package j by 50 pesos per meal. The set of
packages J̃i for which we consider these downward deviations is chosen to generate indepen-
dent variation in each of the type dimensions. Specifically, for each of the type dimensions
indexed by l, we start by choosing a set of packages J̃il to be maximally informative about
that dimension:

• If l is a volume or density economy, then J̃il is the set of 10 packages with the highest
estimated win probabilities for firm i under its observed bids.

• If l is a TU cost, then J̃il contains only the single-unit package with that TU. If we do
not observe firm i bidding on the single-unit package for that TU, then the sole element
of J̃il is the next-smallest package i bids on, with ties broken in descending order of i’s
estimated probability of winning that package.

Then, we take the union of these dimension-specific sets J̃il and further restrict to packages
that (i) firm i bids on in the data, (ii) firm i is allowed to win under the meal and TU
constraints described in appendix B.1, and (iii) whose costs have a nonzero coefficient on
dimension l.

Note that not all firms are allowed to win packages involving all type dimensions. For
example, some firms are restricted in the size of packages they can win (where size is measured
both in number of meals and number of TUs). If firm i is not allowed to win any packages
falling in the highest volume bin, then revealed preference can tell us nothing about the
element of γvolume

i corresponding to that volume bin.

B.4 Type Distribution

B.4.1 Importance Sampling

In principle, it suffices to estimate the likelihood (13) at each candidate θγ by counting how
many draws from FΓi|zi

(· | θγ) lie in the set Gi, though a precise estimate of a small likelihood
– if FΓi|zi

(· | θγ) puts little mass on Gi – may require a large number of draws. We would
ideally like to sample γi from FΓi|zi

(· | θγ) conditional on γ being in Gi, but doing so in closed
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form is possible only in one dimension. Instead, we use importance sampling, taking draws
from a proposal distribution Gi and reweighting them by their likelihood ratios:

L (θγ | Gi) =
∫

1 {x ∈ Gi}
fΓi|zi

(x; θγ)
gi (x) dGi(x) (14)

We furthermore use draws from Gi conditional on the type bounds Gi; denote this conditional
distribution by G̃i. Inside the set Gi, the unconditional and conditional distributions differ
by the total mass that Gi puts on Gi:

dG̃i (x) = 1 {x ∈ Gi}∫
1 {y ∈ Gi} dGi (y)dGi (x) (16)

In particular, when x ∈ Gi. then dGi (x) = [
∫

1 {y ∈ Gi} dGi (y)] dG̃i (x). As a result, the
likelihood in equation (14) becomes

L (θγ | Gi) =
∫

1 {x ∈ Gi}
fΓi|zi

(x; θγ)
gi (x)

[∫
1 {y ∈ Gi} dGi (y)

]
dG̃i (x)

=
[∫

1 {y ∈ Gi} dGi (y)
]

×
∫ fΓi|zi

(x; θγ)
gi (x) dG̃i (x)

=:
[∫

1 {y ∈ Gi} dGi (y)
]

× L̃
(
θγ | Γ̃i

)
where the second equality uses the fact that, by definition, 1 {x ∈ Gi} ≡ 1 for x drawn from
G̃i. Call L̃ (θγ | Gi) the quasi-likelihood, which differs from the true likelihood by the same
factor

∫
1 {y ∈ Gi} gi (y) dy as in equation (16). Since this factor does not depend on θγ, it

suffices to use the quasi-likelihood in Metropolis-Hastings rather than the true likelihood. The
quasi-likelihood is easy to compute, as it doesn’t require integrating out the mass that the
unconditional proposal distribution puts on Gi. We approximate the quasi-likelihood using
Sprop

γ = 1,000 draws γ(s)
i from G̃i, the version of the proposal distribution that conditions on

the type bounds:

L̃
(
θγ | Γ̃i

)
≈ 1
Sprop

γ

Sprop
γ∑
s=1

fΓi|zi

(
γ

(s)
i ; θγ

)
gi

(
γ

(s)
i

)
Appendix B.4.2 describes how we generate draws from the conditional proposal distribution.

Finally, this discussion has so far assumed that firm i is allowed to win at least one package
involving each type dimension. If there are in fact some dimensions that are infeasible for
i, then Gi must always be completely unbounded in those dimensions, as no bids by the
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firm can ever be informative about its values for those dimensions. When evaluating the
(quasi-)likelihood, we therefore drop infeasible dimensions from both the type bound Gi and
the proposal distribution Gi, and we integrate out over infeasible dimensions in FΓi|zi

. (This
is easy because Gi is a product distribution and FΓi|zi

is multivariate normal.)

B.4.2 Proposal Distribution

Constructing the Unconditional Distribution The advantage of importance sampling is that
fewer draws are required to precisely estimate the likelihood; the challenge is choosing the
proposal distribution well. Its support must contain Gi, and it ideally concentrates most of
its mass there. Its density should be easy to evaluate. The variance of the resulting likelihood
ratios should be minimized, so that the effective sample size is maximized. The difficulty of
designing the right proposal distribution increases with the dimension of the random vector.

Let Gi be a (firm-specific) product distribution on the L-dimensional box containing Gi. We
use a product of uniform and exponential distributions, depending on whether the given
dimension is bounded. For each dimension l, define

γil = inf
{
γil ∈ R ∪ {−∞} : (γil, γi,−l) ∈ Gi for some γi,−l ∈ RL−1

}
γ̄il = sup

{
γil ∈ R ∪ {+∞} : (γil, γi,−l) ∈ Gi for some γi,−l ∈ RL−1

}
χil =

−100, l is a volume or density economy

300, l is a TU cost

χ̄il =

100, l is a volume or density economy

600, l is a TU

Then we define Gil, the proposal distribution for dimension l, as follows:

• If γil > χil and γ̄il < χ̄il, then Gil is uniform on [γil, γ̄il].

• If γil > χil but not γ̄il < χ̄il, then we take Gil to be unbounded from above. Let Gil be
the shifted and re-scaled exponential distribution with minimum γil and 75th percentile
χ̄il.

• If γ̄il < χ̄il but not γil > χil, then we take Gil to be unbounded from below. Let Gil be
the shifted, rescaled, and flipped exponential distribution with maximum γ̄il and 25th
percentile χil.
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• If neither γil > χil nor γ̄il < χ̄il, then we take Gil to be unbounded in both directions.
Let Gil be the shifted and re-scaled Laplace (double exponential) distribution with 25th
percentile χil and 75th percentile χ̄il.

Ideally, we would like to sample uniformly from the smallest box in RL containing Gi, which
would amount to sampling uniformly and independently from each dimension. This is cer-
tainly not possible in dimension l if Gi is unbounded in that dimension—that is, if the outer
bounds γil and γ̄il are not both finite. In this case, we want that dimension’s proposal distri-
bution Gil to have full support on the half or full real line, hence we set it to the exponential
or double exponential. However, even if γil and γ̄il are both finite, these outer bounds might
still be very uninformative, and it will be undesirable to sample uniformly from such a large
interval. If we don’t have χil < γil < γ̄il < χ̄il, then we still use the exponential or double
exponential for Gil.

Sampling from the Conditional Distribution We take proposal draws from Gi conditional
on Gi using Gibbs sampling to draw one dimension at a time. Suppose we want to sample
the sth new value for the lth cost parameter. Let γ(s)

i,−l =
(
γ

(s)
i1 , . . . γ

(s)
i,l−1, γ

(s−1)
i,l+1 , . . . , γ

(s−1)
i,nγ

)
be

the vector of current values for the other L − 1 dimensions. The set of values γil such that(
γil, γ

(s)
i,−l

)
∈ Gi is an interval, so we draw the new cost parameter γ(s)

il from Gil truncated to
this interval.

We start by sampling 10,000 proposal draws, discarding the first half as burn-in and thinning
the remainder by keeping every fifth draw. We end up with Sprop

γ = 1,000 proposal draws
which are used to estimate the likelihood.

B.4.3 Metropolis-Hastings

Before running Metropolis-Hastings, we first estimate θγ via maximum (quasi-)likelihood. We
start the maximum likelihood estimation at the following parameters: µvolume = 0, µdensity =
0, µTU = (400, . . . , 400), µincumb = 0, and Σ = 502I. Let θ̂ML

γ denote the MLE point estimate,
and let ĤML

γ be the Hessian of the log-(quasi-)likelihood evaluated at θ̂ML
γ . We use θ̂ML

γ as
the starting point for Metropolis-Hastings.

For the jump distribution, we use a multivariate normal centered at zero, with variance-
covariance matrix proportional to the inverse of the negative of the Hessian,

(
−ĤML

γ

)−1
.

The scaling parameter is chosen to target a rejection rate of between 0.4 and 0.6; in practice,
we multiply the inverse Hessian by 0.032. The inverse Hessian contains information about
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how large a step to take in each dimension and how correlated the dimensions are. If the
posterior marginal distribution of a parameter is very concentrated, then the corresponding
diagonal element of the Hessian will be large, so the step size in that dimension will be
small. When the posterior marginal distribution is very diffuse, the step size under the jump
distribution will be large.

We start with 1 million Metropolis-Hastings iterations; then, we discard the first half as
burn-in and thin the remainder by keeping every fiftieth draw. The result is Sθγ = 10,000
draws of θγ. We report summary statistics for the sampled draws in tables B.4 and B.5.
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Table B.4: Metropolis-Hastings Draws of Volume and Density Economy Parameters

µ σ

Small firms Large firms

95% confidence set 95% confidence set 95% confidence set

Mean SD LB UB Mean SD LB UB Mean SD LB UB

Volume 1 -11.507 21.928 -94.290 70.663 -9.275 26.542 -115.293 122.521 74.204 12.680 42.428 131.952
Volume 2 -30.158 11.590 -73.483 21.540 -8.649 14.055 -71.863 47.702 37.765 8.048 20.819 94.444
Volume 3 -19.683 11.886 -66.354 35.007 -19.900 11.456 -64.250 23.391 30.848 7.087 16.193 81.524
Volume 4 -9.298 37.740 -215.879 148.431 -25.790 18.891 -108.725 74.027 35.638 17.707 6.106 129.513
Density 1 -4.600 3.435 -18.132 8.625 2.711 4.137 -13.423 18.375 10.853 2.119 5.646 19.080
Density 2 0.178 6.126 -26.866 41.199 4.559 6.387 -25.001 34.046 14.120 4.128 5.934 40.203

Note: To construct the 95 percent confidence set, we compute the minimum and maximum values of each parameter among the 95 percent of
Metropolis-Hastings draws (after burning and thinning) with the highest values of the likelihood.
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Table B.5: Metropolis-Hastings Draws of TU Cost Parameters

µ σ

95% confidence set 95% confidence set

Mean SD LB UB Mean SD LB UB

TU 401 462.882 6.223 434.242 492.351 25.258 5.491 11.646 59.539
TU 402 409.170 8.409 364.553 445.384 34.828 7.342 19.305 75.865
TU 403 500.153 4.549 480.217 519.402 18.029 4.019 8.191 44.645
TU 404 619.820 58.410 438.540 812.952 274.968 47.589 166.877 439.077
TU 405 549.370 14.984 488.505 623.228 62.880 11.855 33.318 126.407
TU 501 470.523 13.027 421.373 523.690 53.055 10.943 29.483 114.743
TU 502 371.022 14.678 303.596 416.804 60.811 10.796 32.745 104.638
TU 503 404.424 11.086 357.965 447.487 46.099 8.700 25.910 90.902
TU 504 389.384 8.013 348.499 423.183 31.509 7.748 15.528 93.869
TU 505 400.846 9.514 367.954 442.166 38.464 7.857 17.821 97.961
TU 506 411.759 7.021 374.353 435.900 25.834 10.239 11.028 82.689
TU 507 414.557 8.962 374.139 452.098 36.079 7.895 19.096 87.309
TU 508 368.979 6.619 344.987 395.647 23.611 5.007 11.442 46.705
TU 510 385.638 18.056 311.150 455.317 82.265 15.674 43.593 155.060
TU 511 395.946 8.124 369.086 429.932 31.944 6.946 13.101 76.150
TU 901 466.919 11.248 416.666 512.511 49.072 12.149 15.326 123.650
TU 902 480.806 13.166 427.306 539.300 53.675 12.224 27.554 139.168
TU 903 521.769 23.808 439.945 630.150 98.422 30.706 23.153 185.951
TU 904 416.109 5.616 394.391 448.530 22.078 4.863 11.771 52.692
TU 905 433.060 12.728 382.972 482.855 54.647 10.097 31.840 98.462
TU 906 453.025 8.670 396.626 490.295 31.768 10.166 15.857 102.798
TU 907 465.834 10.842 429.383 517.135 43.403 10.430 13.868 95.346
TU 908 516.200 19.083 400.057 591.895 73.687 16.649 40.145 156.052
TU 909 503.912 19.666 416.887 584.630 88.452 15.876 50.673 168.220
TU 1201 547.574 17.934 477.209 648.365 69.930 14.976 37.236 160.578
TU 1331 370.662 14.950 312.350 429.718 64.083 11.224 32.686 125.590
TU 1332 348.331 16.872 259.191 418.628 72.816 14.634 41.662 186.140
TU 1333 329.089 16.026 247.694 434.639 70.122 12.591 39.913 140.245
TU 1334 386.891 28.422 260.902 483.792 126.246 20.673 70.418 225.348
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Table B.5: Metropolis-Hastings Draws of TU Cost Parameters

µ σ

95% confidence set 95% confidence set

Mean SD LB UB Mean SD LB UB

TU 1335 369.221 11.345 327.185 409.970 47.260 8.444 24.269 89.210
TU 1336 365.385 8.698 326.605 406.966 34.658 6.933 17.774 70.070
TU 1339 399.456 14.771 339.603 465.194 63.102 11.609 34.540 121.559
Incumbency
shifter

-9.196 8.353 -43.462 17.798

Note: To construct the 95 percent confidence set, we compute the minimum and maximum values of each

parameter among the 95 percent of Metropolis-Hastings draws (after burning and thinning) with the highest

values of the likelihood.

B.4.4 Type Distribution Estimates

Across all firms and all TUs, the mean TU cost is 434 pesos per meal, compared to the mean
TU base price of 464 pesos per meal discussed in section 5.3.1. The average markup from TU
cost to TU base price is 7.7 percent of the TU base price. TUs on which firms bid higher base
prices are also higher-cost to supply. Figure B.2 compares the two distributions separately
for each TU.

B.5 Welfare Analysis

B.5.1 Sampling from the Conditional Type Distribution

For our welfare analysis, we need draws from the estimated type distribution FΓi|zi

(
· | θ̂γ

)
conditional on type bounds Gi for each firm i. Obtaining these draws requires sampling from
a multivariate normal distribution truncated to a polyhedron. While it is possible to sample
from truncated univariate normals in closed form using inverse transform sampling, there
is no equivalent procedure in higher dimensions. Furthermore, naive rejection sampling is
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Figure B.2: Distributions of Firms’ TU Base Prices and Costs

Note: These violin plots show the distributions of firms’ TU base prices β̃ik (left, in blue) and TU costs γTU
ik

(right, in orange). In each TU k’s violin plots, an observation is a firm i. Firm i’s cost of supplying each
TU k is computed from the mean of the estimated type distribution FΓi|zi

(
· | θ̂γ

)
conditional on the type

bounds Gi.
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computationally inefficient when the polyhedron’s volume is small relative to the dimension
of the space: most of the sampled draws from the unconditional distribution are discarded,
so the number of unconditional draws required in order to obtain each conditional draw is
high.

Instead, we sample firm types γi via Gibbs sampling, drawing one dimension at a time as in
appendix B.4.2. We run the Gibbs sampler for 100,000 iterations, discarding the first half as
burn-in and thinning the remainder by a factor of five. We end up with Sγ = 10,000 draws
of each firm’s cost parameters, which we use for the parametric results in Section 5.4.

B.5.2 Awarded Bid Cost and Markup Estimates

We present estimates of package costs and markups for each of the winning bids in table B.6.
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Table B.6: Awarded Bid Cost and Markup Estimates

Cost (pesos per meal) Markup (% of price bid)
Firm TUs

Meals
(millions)

Price bid
(pesos per

meal)

LB UB Mean LB UB Mean

10 [401, 402, 901, 902, 903, 906,
908, 909]

21.17 462.98 415.80 462.98 450.56 0.00 10.19 2.68

13 [905, 1334] 5.23 386.07 270.69 386.07 330.80 -0.00 29.89 14.32
16 [504, 505, 507] 6.42 391.58 -582.71 391.58 329.92 0.00 248.81 15.74
17 [403, 404, 502, 503, 904, 907,

1201, 1331]
20.91 405.64 304.40 404.98 379.93 0.16 24.96 6.34

19 [1332, 1333, 1336] 9.48 340.05 338.56 339.90 339.49 0.04 0.44 0.17
26 [501] 1.64 459.07 441.15 459.07 453.69 0.00 3.90 1.17
28 [506, 508, 510, 511] 10.22 381.66 373.63 381.66 379.62 0.00 2.10 0.53
36 [1335, 1339] 3.60 381.77 323.21 381.77 370.04 -0.00 15.34 3.07
47 [405] 2.08 536.59 444.01 460.39 447.98 14.20 17.25 16.51
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